Hodgson CJ. The scale insect family Coccidae: an identification manual to genera: CAB international. Oxon, UK: Wallingford; 1994.
Google Scholar
Kondo T, Gullan PJ, Williams DJ. Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Rev corpoica-cienc T. 2008;9(2):55–61.
Google Scholar
García Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB: ScaleNet: a literature-based model of scale insect biology and systematics. http://scalenet.info, 2016 (accessed 17 May 2022).
Gullan PJ, Kosztarab M. Adaptations in scale insects. Annu Rev Entomol. 1997;42(1):23–50.
Article
CAS
Google Scholar
Gullan PJ, Martin JH. Sternorrhyncha: (jumping plant-lice, whiteflies, aphids, and scale insects). In: Encyclopedia of insects. San Diego: Elsevier; 2009. p. 957–67.
Chapter
Google Scholar
Deng J, Yu F, Zhang Tx H, Hy ZCD, Wu SA, et al. DNA barcoding of six Ceroplastes species (Hemiptera: Coccoidea: Coccidae) from China. Mol Ecol Resour. 2012;12(5):791–6.
Article
CAS
Google Scholar
Wang X, Deng J, Zhang J, Zhou Q, Zhang Y, Wu S. DNA barcoding of common soft scales (Hemiptera: Coccoidea: Coccidae) in China. Bull Entomol Res. 2015;105(5):545–54.
Article
CAS
Google Scholar
Wolstenholme DR. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 1992;141:173–216.
Article
CAS
Google Scholar
Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27(8):1767–80.
Article
CAS
Google Scholar
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2014;59:95–117.
Article
CAS
Google Scholar
Lu C, Huang X, Deng J. The challenge of Coccidae (Hemiptera: Coccoidea) mitochondrial genomes: the case of Saissetia coffeae with novel truncated tRNAs and gene rearrangements. Int J Biol Macromol. 2020;158:854–64.
Article
CAS
Google Scholar
Deng J, Lu C, Huang X. The first mitochondrial genome of scale insects (Hemiptera: Coccoidea). Mitochondrial DNA B. 2019;4(2):2094–5.
Article
Google Scholar
Liu HL, Chen QD, Chen S, Pu DQ, Chen ZT, Liu YY, et al. The highly rearranged mitochondrial genomes of three economically important scale insects and the mitochondrial phylogeny of Coccoidea (Hemiptera: Sternorrhyncha). PeerJ. 2020;8:e9932.
Article
Google Scholar
Xu H, Liu X, Li H, Wu S. The mitogenome of the scale insect Didesmococcus koreanus Borchsenius, 1955 (Coccoidea: Coccidae). Mitochondrial DNA B. 2021;6(4):1298–9.
Article
Google Scholar
Xu H, Wu SA. Parasitized wasp mitogenomes mistaken for scale insect host mitogenome sequences. Entomotaxonomia. 2022;44(1):24–9.
Google Scholar
Jermiin LS, Crozier RH. The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content. J Mol Evol. 1994;38(3):282–94.
Article
CAS
Google Scholar
Sueoka N. Directional mutation pressure, mutator mutations, and dynamics of molecular evolution. J Mol Evol. 1993;37(2):137.
Article
CAS
Google Scholar
Castellana S, Vicario S, Saccone C. Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein-coding genes. Genome Biol Evol. 2011;3:1067–79.
Article
CAS
Google Scholar
Chang H, Qiu Z, Yuan H, Wang X, Li X, Sun H, et al. Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Mol Phylogenet Evol. 2020;145:106734.
Article
CAS
Google Scholar
Shen YY, Shi P, Sun YB, Zhang YP. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 2009;19(10):1760–5.
Article
CAS
Google Scholar
Wagner A. Neutralism and selectionism: a network-based reconciliation. Nat Rev Genet. 2008;9(12):965–74.
Article
CAS
Google Scholar
Guan DL, Qian ZQ, Ma LB, Bai Y, Xu SQ. Different mitogenomic codon usage patterns between damselflies and dragonflies and nine complete mitogenomes for odonates. Sci Rep. 2019;9(1):1–9.
Article
Google Scholar
James JE, Piganeau G, Eyre-Walker A. The rate of adaptive evolution in animal mitochondria. Mol Ecol. 2016;25(1):67–78.
Article
CAS
Google Scholar
Hershberg R, Petrov DA. Selection on codon bias. Annu Rev Genet. 2008;42:287–99.
Article
CAS
Google Scholar
Wang H, Meng T, Wei W. Analysis of synonymous codon usage bias in helicase gene from Autographa californica multiple nucleopolyhedrovirus. Genes Genom. 2018;40(7):767–80.
Article
CAS
Google Scholar
Clary DO, Wolstenholme DR. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–71.
Article
CAS
Google Scholar
Song N, Zhang H, Zhao T. Insights into the phylogeny of Hemiptera from increased mitogenomic taxon sampling. Mol Phylogenet Evol. 2019;137:236–49.
Article
Google Scholar
Li H, Leavengood JM Jr, Chapman EG, Burkhardt D, Song F, Jiang P, et al. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc Royal Soc B. 1862;2017(284):20171223.
Google Scholar
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am. 1994;87(6):651–701.
Article
CAS
Google Scholar
Wei SJ, Chen XX. Progress in research on the comparative mitogenomics of insects. Chin J Appl Entomol. 2011;48(06):1573–85.
CAS
Google Scholar
Guo ZL, Yuan ML. Research progress of mitochondrial genomes of Hemiptera insects. Sci China. 2016;46(2):151–66.
Google Scholar
Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, et al. Extreme mutation bias and high AT content in plasmodium falciparum. Nucleic Acids Res. 2017;45(4):1889–901.
CAS
Google Scholar
Kreutzer DA, Essigmann JM. Oxidized, deaminated cytosines are a source of C→T transitions in vivo. PNAS. 1998;95(7):3578–82.
Article
CAS
Google Scholar
Park DS, Suh SJ, Hebert PD, Oh HW, Hong K. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae). Bull Entomol Res. 2011;101(4):429–34.
Article
CAS
Google Scholar
Shah TH. Plant nutrients and insects development. Int J Entomol Res. 2017;2(6):54–7.
Google Scholar
Oliveira DC, Raychoudhury R, Lavrov DV, Werren JH. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol. 2008;25(10):2167–80.
Article
CAS
Google Scholar
Shoemaker DD, Dyer KA, Ahrens M, McAbee K, Jaenike J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics. 2004;168(4):2049–58.
Article
CAS
Google Scholar
Gomez-Polo P, Ballinger MJ, Lalzar M, Malik A, Ben-Dov Y, Mozes-Daube N, et al. An exceptional family: Ophiocordyceps-allied fungus dominates the microbiome of soft scale insects (Hemiptera: Sternorrhyncha: Coccidae). Mol Ecol. 2017;26(20):5855–68.
Article
CAS
Google Scholar
Deng J, Yu Y, Wang X, Liu Q, Huang X. The ubiquity and development-related abundance dynamics of Ophiocordyceps fungi in soft scale insects. Microorganisms. 2021;9(2):404.
Article
CAS
Google Scholar
Yokobori S-i, Pääbo S. Polyadenylation creates the discriminator nucleotide of chicken mitochondrial tRNATyr. J Mol Biol. 1997;265(2):95–9.
Article
CAS
Google Scholar
Wei L, He J, Jia X, Qi Q, Liang Z, Zheng H, et al. Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution. BMC Evol Biol. 2014;14(1):1–12.
Article
Google Scholar
Sueoka N. Directional mutation pressure and neutral molecular evolution. PNAS. 1988;85(8):2653–7.
Article
CAS
Google Scholar
Wright F. The ‘effective number of codons’ used in a gene. Gene. 1990;87(1):23–9.
Article
CAS
Google Scholar
Jia W, Higgs PG. Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol. 2008;25(2):339–51.
Article
CAS
Google Scholar
Yang H, Li T, Dang K, Bu W. Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera). BMC Genomics. 2018;19(1):1–13.
Article
Google Scholar
Krzywinski J, Li C, Morris M, Conn JE, Lima JB, Povoa MM, et al. Analysis of the evolutionary forces shaping mitochondrial genomes of a Neotropical malaria vector complex. Mol Phylogenet Evol. 2011;58(3):469–77.
Article
CAS
Google Scholar
Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13(4):729–44.
Article
Google Scholar
Berry OF. Mitochondrial DNA and population size. Science. 2006;314(5804):1388–90.
Article
Google Scholar
Hao YJ, Zou YL, Ding YR, Xu WY, Yan ZT, Li XD, et al. Complete mitochondrial genomes of Anopheles stephensi and an. Dirus and comparative evolutionary mitochondriomics of 50 mosquitoes. Sci Rep. 2017;7(1):1–13.
Article
Google Scholar
Li XD, Jiang GF, Yan LY, Li R, Mu Y, Deng WA. Positive selection drove the adaptation of mitochondrial genes to the demands of flight and high-altitude environments in grasshoppers. Front Genet. 2018;9:605.
Yang Y, Xu S, Xu J, Guo Y, Yang G. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects. PLoS One. 2014;9(6):e99120.
Article
Google Scholar
Wang Y, Chen J, Jiang LY, Qiao GX. Hemipteran mitochondrial genomes: features, structures and implications for phylogeny. Int J Mol Sci. 2015;16(6):12382–404.
Article
CAS
Google Scholar
Taylor CR, Heglund NC, Maloiy G. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J Exp Biol. 1982;97(1):1–21.
Article
CAS
Google Scholar
Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP. Adaptive evolution of energy metabolism genes and the origin of flight in bats. PNAS. 2010;107(19):8666–71.
Article
CAS
Google Scholar
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45(4):e18–8.
Google Scholar
Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1. 0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.
Article
CAS
Google Scholar
Jin JJ, Yu WB, Yang JB, Song Y, Depamphilis CW, Yi TS, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21(1):1–31.
Article
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963.
Article
Google Scholar
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69(2):313–9.
Article
Google Scholar
Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24(2):172–5.
Article
CAS
Google Scholar
Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithm Mol Biol. 2011;6(1):1–14.
Article
Google Scholar
Grant JR, Stothard P. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36(suppl_2):W181–4.
Article
CAS
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–9.
Article
CAS
Google Scholar
Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, et al. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics. 2007;23(21):2957–8.
Article
CAS
Google Scholar
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20(1):348–55.
Article
Google Scholar
Behura SK, Severson DW. Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes. PLoS One. 2012;7(8):e43111.
Article
CAS
Google Scholar
Deb B, Uddin A, Chakraborty S. Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae. Arch Virol. 2021;166(2):461–74.
Article
CAS
Google Scholar
Peden JF. Analysis of codon usage, PhD thesis. Department of Genetics: University of Nottingham; 1999.
Google Scholar
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2.
Article
CAS
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7.
Article
CAS
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
Google Scholar
Xia X, Xie Z, Salemi M, Chen L, Wang Y. An index of substitution saturation and its application. Mol Phylogenet Evol. 2003;26(1):1–7.
Article
CAS
Google Scholar
Xia X, Lemey P. Assessing substitution saturation with DAMBE. The phylogenetic handbook: a practical approach to DNA and protein phylogeny, Cambridge University Press, Cambridge. 2009;2:615–30.
Article
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TK, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9.
Article
CAS
Google Scholar
Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.
Article
CAS
Google Scholar