Open Access

Transcriptional response of Mexican axolotls to Ambystoma tigrinum virus (ATV) infection

  • Jennifer D Cotter1Email author,
  • Andrew Storfer1,
  • Robert B Page2,
  • Christopher K Beachy3 and
  • S Randal Voss2
BMC Genomics20089:493

DOI: 10.1186/1471-2164-9-493

Received: 03 January 2008

Accepted: 20 October 2008

Published: 20 October 2008

Abstract

Background

Very little is known about the immunological responses of amphibians to pathogens that are causing global population declines. We used a custom microarray gene chip to characterize gene expression responses of axolotls (Ambystoma mexicanum) to an emerging viral pathogen, Ambystoma tigrinum virus (ATV).

Result

At 0, 24, 72, and 144 hours post-infection, spleen and lung samples were removed for estimation of host mRNA abundance and viral load. A total of 158 up-regulated and 105 down-regulated genes were identified across all time points using statistical and fold level criteria. The presumptive functions of these genes suggest a robust innate immune and antiviral gene expression response is initiated by A. mexicanum as early as 24 hours after ATV infection. At 24 hours, we observed transcript abundance changes for genes that are associated with phagocytosis and cytokine signaling, complement, and other general immune and defense responses. By 144 hours, we observed gene expression changes indicating host-mediated cell death, inflammation, and cytotoxicity.

Conclusion

Although A. mexicanum appears to mount a robust innate immune response, we did not observe gene expression changes indicative of lymphocyte proliferation in the spleen, which is associated with clearance of Frog 3 iridovirus in adult Xenopus. We speculate that ATV may be especially lethal to A. mexicanum and related tiger salamanders because they lack proliferative lymphocyte responses that are needed to clear highly virulent iridoviruses. Genes identified from this study provide important new resources to investigate ATV disease pathology and host-pathogen dynamics in natural populations.

Background

Emerging infectious diseases (EIDs) pose a serious threat to the health, stability, and persistence of human and wildlife populations [14]. Genetic and genomic tools have been incredibly useful for discovery of genes associated with host response and variation in resistance or susceptibility to a variety of pathogens [57]. The advent of genomic tools such as microarray analysis has offered new insights into host-pathogen systems. Additionally, their application to genomic response to host disease response allows rapid characterization of candidate genes for further research into control and eradication methods.

EIDs are a leading hypothesis for the global decline of amphibians and two pathogens in particular, Batrachochytrium dendrobatidis and Ranaviruses have been implicated in worldwide epizootics. Although studies are beginning to investigate possible mechanisms of resistance to these pathogens [8], in general, very little is known about the immune response of amphibians to EIDs. This is because most natural amphibian species are not used as laboratory models and we lack fundamental molecular tools to investigate disease pathology and host-pathogen interactions at the molecular level for all but a few species (e.g., Ambystoma tigrinum spp., Xenopus spp.).

Over the last 15 years, Ranavirus infections have been associated with marked increases in morbidity and mortality in fish, reptiles, and amphibians [9]. Ranaviruses are globally-distributed double-stranded, methylated DNA viruses of fish, amphibians and reptiles and are implicated in amphibian epizootics worldwide [911]. Both encapsulated and non-encapsulated forms can be infectious. The virus enters the cell via receptor mediated endocytosis or via fusion with the plasma membrane; and DNA and RNA synthesis occur in the nucleus, while protein synthesis occurs at morphologically specific assembly sites in the cytoplasm [9]. In North America, ranaviruses have been isolated from the majority of recent documented amphibian epizootics [12], including from tiger salamander (Ambystoma tigrinum) epizootics in Saskatchewan, Canada [13], Arizona [14], North Dakota, Utah, and Colorado, USA [15, 16]. The viral variant that infects tiger salamanders, ATV, is transmitted either via direct contact with an infected animal or immersion in water that contains virus and infected individuals exhibit systemic hemorrhaging, edema, ulceration, and necrosis of the integument and internal organs [13, 17, 18]. In cases where ATV infection leads to mortality, it usually occurs within 2–3 weeks of exposure, with animals displaying symptoms often between 8–10 days post-exposure. Thus, ATV can rapidly overwhelm the tiger salamander immune response. However, mortality is not always a pathological endpoint because virulence and resistance are known to vary among ATV strains and tiger salamander populations, respectively, as indicated by both laboratory experiments and field observations [19]. Research characterizing the tiger salamander genomic response to ATV is needed to better understand the pathology, virulence, and possible mechanisms of resistance to this emerging disease.

The tiger salamander species complex includes A. mexicanum (Mexican axolotl), a model organism with a growing genomic and informatics resource base [20]. The immune system of the Mexican axolotl has been extensively studied using several classical approaches. Relative to other vertebrate models, the axolotl immune response has been described as immunodeficient [21, 22]. There are several reasons for this characterization, including: production of only two immunoglobulin (Ig) classes, only one of which regulates the humoral response and neither of which is anamnestic [23, 24]; no response to soluble antigens [25]; poor mixed lymphocyte reactions [26, 27]; and lack of cellular cooperation during the humoral immune response as indicated by enhanced humoral immunity following thymectomy or X-ray irradiation [28, 29]. Weak immune responses are known for salamanders in general, and the Mexican axolotl and related tiger salamanders are especially susceptible to ATV infections with high observed mortality rates both in the laboratory and in the field. Indeed, an outbreak of ATV in 2003 at the Indiana Axolotl Colony significantly reduced adult stocks before the virus was contained. By way of comparison, adult Xenopus effectively clear close-related FV3 Ranavirus with an immune response that includes an early T-cell proliferative phase in the spleen [30].

To further investigate the axolotl immune response to ATV, we used an Affymetrix custom microarray to identify genes that were significantly, differentially expressed in the spleen. We then compared these genes to a list of genes associated with regeneration that were previously identified from A. mexicanum using the same microarray platform. We reasoned that such a comparison would allow us to filter gene expression responses of humoral cells induced generally in response to injury and stress from those expressed specifically in response to ATV infection. Also, this comparison would potentially identify gene expression signatures associated with cell proliferation in response to ATV, as we have previously identified many cell proliferation probe sets on the Ambystoma genechip that are differentially regulated during spinal cord regeneration [31]. The genes that we describe provide mechanistic insights and new tools to investigate salamander antiviral responses in the laboratory and in natural populations.

Methods

Animal care and surgery protocols

Inbred A. mexicanum eggs from a single full-sib mating were obtained from the Ambystoma Genetic Stock Center at the University of Kentucky. Each A. mexicanum egg and larva was reared in an individual container in aquifer water treated with ReptiSafe and changed weekly. Individuals were fed brine shrimp ad libitum for the first four weeks post-hatching and blackworms (Tubifex) ad libitum thereafter. Animals were reared in an environmental chamber on a 12:12 h light:dark cycle at 20°C. At 4.5 months of age, 12 individuals were injected with 100 μl of 106 p.f.u./ml of ATV isolated from the axolotl colony and suspended in cell culture medium. This amount of virus was determined to be the minimum lethal dose via injection in previous unpublished experiments (Storfer, unpublished data) and the strain utilized in the experiment was extracted from axolotls that had previously been infected and killed by the virus. Simultaneously, four uninfected (control) individuals were sacrificed in MS222 for spleen and lung removal. Spleens from all animals were flash frozen in liquid nitrogen. The same surgical procedure was performed on four infected individuals following 24, 72 and 144 hours of infection. Spleen tissue was utilized due to its previously noted importance in CD8+ T cell immune responses to Ranaviruses, particularly FV3, in frogs [30] Additionally, spleen is an important immune organ as antigens from the blood are processed in the spleen. Lung tissue was removed for viral quantification as it is an internal organ that can be utilized in early stage virus quantification (Stewart, unpublished data).

During the infection period behavioral observations were taken opportunistically. Total RNA was extracted from spleen with TRIzol (Invitrogen) according to the manufacturer's protocol. RNA isolations were further purified using RNeasy mini columns (Qiagen). The amount of RNA present in each isolate was determined via UV spectrophotometry, and RNA quality was inspected via a 2100 Agilent Bioanalyzer. Sixteen high quality isolates (four replicates at each of four sampling times: 0 (controls), 24, 72, and 144 hours post-infection) were used to make individual-specific pools of biotin labeled cRNA probes. Each of the 16 pools was then independently hybridized to an Amby_001 custom Affymetrix GeneChip (for a more detailed description of the microarray platform see [31] and [32]). The University of Kentucky Microarray Core Facility generated cRNA probes and performed hybridizations according to standard Affymetrix protocols.

Quality Control and Data Processing

All quality control and processing analyses were done in R [33]http://www.r-project.org. We used the Bioconductor package "affy" http://www.bioconductor.org to perform several quality control analyses at the individual probe level [34, 35]. These analyses included: (1) viewing images of the log(intensity) values of the probes on each GeneChip to check for spatial artifacts, (2) investigating measures of central tendency and dispersion by viewing box-plots and histograms of all the GeneChips, (3) viewing pair-wise M versus A plot matrices for replicate GeneChips, and (4) viewing an RNA degradation plot [35] that enables the visualization of the 3' labeling bias associated with all GeneChips simultaneously. Upon conducting these probe level analyses, we background corrected, normalized, and summarized all sixteen GeneChips using the Robust Multi-array Average (RMA) algorithm [36]. Following this, we calculated correlation matrices for replicate GeneChips (four correlation matrices with four GeneChips per matrix; all r from replicate GeneChips > 0.980) on the summarized probe-set level data. The strong correlations observed between replicate GeneChips suggests that we were able to obtain a high degree of repeatability within treatments.

Data Filtering

Microarrays may not accurately quantify the abundance of lowly expressed genes [37]. Calculating statistical tests for such genes adds to the multiple testing burden that is inherent to microarray studies. To address this issue, we filtered genes whose mean intensity across all 16 GeneChips was greater than the mean of the lowest quartiles (25th percentiles) across all GeneChips (n = 16, mean = 5.83, SD = 0.06; data presented on a log2 scale). Upon imposing this filtering criterion, 3619 probe-sets were available for significance testing.

Identifying Differentially Expressed Genes

We used the Bioconductor package LIMMA [38, 39] to generate moderated t-statistics for all six of the possible pair-wise contrasts of the four sampling times investigated in our study. LIMMA employs an empirical Bayes methodology that effectively shrinks the sample variances towards a pooled estimate. This approach reduces the likelihood of obtaining large test statistics due to underestimation of the sample variances. The moderated t-statistics generated by LIMMA test the null hypothesis that the difference between the two groups being compared is zero (i.e., group 1 – group 2 = 0). LIMMA also generates moderated F-statistics that test the null hypothesis that none of the contrasts within a family of contrasts are statistically significant. We corrected for multiple testing by applying the step-up algorithm [40] to the P-values of the moderated F-statistics associated with our six contrasts. Upon correcting for multiple testing, we identified 2322 genes (probe-sets) that were statistically significant. To prioritize amongst differentially expressed genes, we focused on probe-sets that exhibited two-fold or greater changes at any time-point relative to controls. Any gene that was non-significantly down-regulated but significantly up-regulated at one or more time points was considered up-regulated, and vice versa for classification of up- versus down-regulation. We also required that these probe sets have moderated F-statistics greater than or equal to the 50th percentile of the 2322 F-statistics from the statistically significant probe-sets (F ≥ 12.68). We further limited our analysis to only those probe sets that exhibited significant sequence identity with a human reference sequence. We note that 263 probe-sets with no functional annotation were statistically significant, differentially expressed by ≥ two-fold, and had F-values ≥ 12.68.

Clustering

Hybridization intensities were averaged within treatment groups (0, 24, 72, and 144 hrs post-infection) and log2 ratios were calculated for each non-zero sampling time relative to 0 hours post-infection. Genesis v. 1.6.0 [41, 42] was used cluster these log2 ratio data and to generate heat maps. Clustering was conducted using a Self Organizing Map (SOM) algorithm. Default conditions were used with the exception that the SOM was allowed to run for 263,000 iterations. The dimensions of the final SOM are 2x *1y. These dimensions were determined by comparing output from several different combinations.

Enrichment Analyses

Functional annotation of genes by gene ontology was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID, [43]). Functional annotation clustering was performed using the default settings with the exception of using the highest classification stringency.

Quantitative real-time PCR

We used quantitative real-time PCR (qPCR) to confirm the results of the microarrays. We estimated a fold change for 24 and 72 hr time points using the ΔΔct method of relative quantification [44], utilizing ribosomal protein L 19 as an endogenous control gene. The same total RNA that was used for microarray analysis was used to create cDNA for qPCR using the BioRad iScript cDNA synthesis kit, following manufacturer instruction. Primers for the qPCR were designed using Primer Express 2.0 (Applied Biosystems). Primers were designed to encompass the sequence of GeneChip probe sets (Additional file 1). qPCR was accomplished using SYBR Green chemistry.

To verify that exposed animals were infected and to quantify viral load and replication over time, we performed qPCR on lung tissue with TaqMan chemistry following the protocol detailed in [45]. ANOVA with a Tukey's HSD correction for all pairwise comparisons was performed to determine if viral loads were significantly different across time points.

Results

Viral load and disease pathogenesis

Viral load for each animal was estimated using qPCR and then averaged for each time point (Fig 1). The significant increase in viral load across time points indicates that animals were infected and that viral replication was occurring. ANOVA with a Tukey's correction for multiple comparisons confirmed that viral load increased linearly between 24, 72, and 144 hours post-infection, and all time points were significantly different from all other time points (F3,44 = 242.56; p ≤ 0.01).
https://static-content.springer.com/image/art%3A10.1186%2F1471-2164-9-493/MediaObjects/12864_2008_Article_1686_Fig1_HTML.jpg
Figure 1

Log values of viral particles quantified with quantitative real-time PCR across all time points.

No animals displayed any gross symptoms of ATV infection in terms of hemorrhaging, lesions or edema, either externally or on any internal organs upon euthanasia and subsequent surgery. Similarly, there were no notable changes in behavior observed during the period of infection. This is likely due to the relatively short infection period utilized in this experiment. As noted in the introduction, infected animals often take 8–10 days, or more, to become symptomatic upon infection.

Gene clustering and functional annotation

We identified 263 probe sets with statistically significant differences in mRNA abundances between Day 0 and any other subsequent time point (Tables 1, 2). We assume that statistically significant probe sets correspond to genes that were differentially regulated after ATV infection. Cluster analysis of the statistically significant genes identified two groups that exhibited similar changes in mRNA abundance. After ATV infection at Day 0, 158 putative genes showed a significant increase in mRNA abundance at subsequent time points (Figure 2), while 105 transcripts showed a significant decrease (Figure 3). Thus, more genes were up-regulated than down-regulated in response to ATV infection. Overall, DAVID categorized statistically significant genes among 44 different groups that correspond to different biological processes. Eight of these groups contained more genes than would be expected by chance sampling of genes from the microarray (geometric mean p-value < 0.05); these groups were considered significantly enriched with candidate genes relative to other groups (Table 3). Four of these significant groups contain gene ontologies related to immune response and pathogen response, including innate immunity, complement activation, lysosome function, and antigen processing and presentation. The most enriched functional group contains genes primarily related to immune function and defense responses. The remaining four functional groups contain gene ontologies related to ion binding, ion transport, vitamin metabolism, and response to an unfolded protein. Many genes that were classified in broader biological process categories that are not directly immunity-related are nonetheless associated with immunity in vertebrates [e.g. [4648]].
Table 1

Genes which were significantly up-regulated at any time point. Numbers indicate fold change at that time point.

Gene ID

Gene Name

24 hr

72 hr

144 hr

immune response

    

SRV_03329_at

INTERFERON-INDUCED PROTEIN WITH TETRATRICOPEPTIDE REPEATS 5

11.85

82.22

91.04

SRV_01342_at

INTERFERON REGULATORY FACTOR 1

1.94

12.71

12.79

SRV_01343_a_at

INTERFERON REGULATORY FACTOR 1

2.10

16.07

15.63

SRV_13637_a_at

INTERFERON INDUCED TRANSMEMBRANE PROTEIN 3 (1–8 U)

1.75

8.48

10.88

SRV_01199_a_at

CLUSTERIN

1.05

4.35

8.02

SRV_00442_at

SOLUTE CARRIER FAMILY 11 (PROTON-COUPLED DIVALENT METAL ION TRANSPORTERS), MEMBER 1

1.28

6.17

5.38

SRV_01303_a_at

GUANYLATE BINDING PROTEIN 1, INTERFERON-INDUCIBLE, 67 KDA

1.10

2.35

2.49

SRV_02828_at

2'-5'-OLIGOADENYLATE SYNTHETASE 3, 100 KDA

2.47

13.56

9.35

SRV_02072_at

CATHEPSIN S

1.54

5.51

6.43

SRV_02588_a_at

LECTIN, GALACTOSIDE-BINDING, SOLUBLE, 3 BINDING PROTEIN

4.04

26.37

24.40

SRV_02586_at

LECTIN, GALACTOSIDE-BINDING, SOLUBLE, 3 BINDING PROTEIN

3.88

21.30

18.03

response to virus

    

SRV_03073_at

INTERFERON-INDUCED PROTEIN 44

2.05

9.44

13.16

SRV_01439_a_at

MYXOVIRUS (INFLUENZA VIRUS) RESISTANCE 1, INTERFERON-INDUCIBLE PROTEIN P78 (MOUSE)

3.13

29.23

36.80

SRV_01441_at

MYXOVIRUS (INFLUENZA VIRUS) RESISTANCE 1, INTERFERON-INDUCIBLE PROTEIN P78 (MOUSE)

3.26

28.24

35.84

SRV_04604_s_at

INTERFERON INDUCED WITH HELICASE C DOMAIN 1

6.81

27.34

24.15

SRV_04604_at

INTERFERON INDUCED WITH HELICASE C DOMAIN 1

7.27

25.43

22.62

SRV_04518_at

RIBONUCLEASE L (2',5'-OLIGOISOADENYLATE SYNTHETASE-DEPENDENT)

3.30

7.38

8.66

cell defense response

    

SRV_00353_at

NEUTROPHIL CYTOSOLIC FACTOR 2 (65 KDA, CHRONIC GRANULOMATOUS DISEASE, AUTOSOMAL 2)

1.05

2.07

1.73

SRV_00264_a_at

MYELOPEROXIDASE

1.60

7.60

4.10

antigen processing and presentation

    

SRV_05347_at

PROTEASOME (PROSOME, MACROPAIN) SUBUNIT, BETA TYPE, 9 (LARGE MULTIFUNCTIONAL PEPTIDASE 2)

1.27

3.73

4.25

lysosome/endosome

    

SRV_02581_a_at

LYSOSOMAL-ASSOCIATED MEMBRANE PROTEIN 1

1.23

2.26

2.06

SRV_12596_at

EH-DOMAIN CONTAINING 1

1.22

4.16

3.47

inflammatory response

    

SRV_10702_at

CYTOCHROME B-245, BETA POLYPEPTIDE (CHRONIC GRANULOMATOUS DISEASE)

1.69

5.58

4.40

SRV_00330_at

CYTOCHROME B-245, BETA POLYPEPTIDE (CHRONIC GRANULOMATOUS DISEASE)

1.59

4.74

3.89

SRV_01877_at

CHEMOKINE (C-X-C MOTIF) RECEPTOR 4

1.29

5.70

8.08

SRV_02292_at

N-myc (and STAT) interactor

1.15

2.29

2.29

SRV_00453_a_at

TRANSFORMING GROWTH FACTOR, BETA 1 (CAMURATI-ENGELMANN DISEASE)

1.12

2.19

2.18

SRV_01617_a_at

PENTRAXIN-RELATED GENE, RAPIDLY INDUCED BY IL-1 BETA

2.83

12.82

17.76

cell cycle

    

SRV_02067_at

POLO-LIKE KINASE 3 (DROSOPHILA)

0.93

3.82

6.18

SRV_11882_s_at

RAS HOMOLOG GENE FAMILY, MEMBER B

1.18

2.33

2.40

SRV_02051_at

RAS HOMOLOG GENE FAMILY, MEMBER B

1.26

2.15

2.28

SRV_02050_at

RAS HOMOLOG GENE FAMILY, MEMBER B

1.23

2.51

2.55

SRV_00154_at

EXOSTOSES (MULTIPLE) 1

0.90

2.07

1.90

glycolysis

    

SRV_01520_at

pyruvate kinase, muscle

1.41

4.60

4.22

SRV_01519_a_at

pyruvate kinase, muscle

1.56

5.94

5.48

B_s_at

ALDOLASE A, FRUCTOSE-BISPHOSPHATE

1.22

3.14

2.96

transcription

    

SRV_01351_at

JUN B PROTO-ONCOGENE

1.76

7.82

7.54

SRV_01336_a_at

INHIBITOR OF DNA BINDING 3, DOMINANT NEGATIVE HELIX-LOOP-HELIX PROTEIN

1.56

3.14

3.57

SRV_02310_at

EUKARYOTIC TRANSLATION TERMINATION FACTOR 1

0.95

2.70

2.45

SRV_03646_at

SPEN HOMOLOG, TRANSCRIPTIONAL REGULATOR (DROSOPHILA)

1.15

2.22

2.30

SRV_02571_at

HAIRY AND ENHANCER OF SPLIT 1, (DROSOPHILA)

1.23

4.52

6.10

complement

    

SRV_00137_a_at

COMPLEMENT COMPONENT 3

1.80

9.79

13.66

SRV_01145_a_at

COMPLEMENT FACTOR B

3.46

18.33

20.05

apoptosis

    

SRV_02399_a_at

MATRIX METALLOPEPTIDASE 9 (GELATINASE B, 92 KDA GELATINASE, 92 KDA TYPE IV COLLAGENASE)

2.19

6.79

8.78

SRV_02516_at

HEAT SHOCK 70 KDA PROTEIN 5 (GLUCOSE-REGULATED PROTEIN, 78 KDA)

2.70

10.28

7.60

SRV_04970_a_at

CASPASE RECRUITMENT DOMAIN FAMILY, MEMBER 6

1.35

4.78

4.80

SRV_08154_a_at

HEAT SHOCK 70 KDA PROTEIN 9B (MORTALIN-2)

1.18

3.45

2.71

SRV_04300_a_at

CYTOCHROME C, SOMATIC

1.30

2.80

2.64

SRV_02132_at

EUKARYOTIC TRANSLATION ELONGATION FACTOR 1 EPSILON 1

1.21

3.56

3.38

SRV_01812_a_at

HEAT SHOCK PROTEIN 90 KDA BETA (GRP94), MEMBER 1

1.31

3.53

3.26

SRV_03753_at

GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE, BETA

1.39

7.34

8.89

SRV_03023_a_at

GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE, GAMMA

1.00

3.73

5.99

metabolic process

    

SRV_05147_a_at

SYNDECAN BINDING PROTEIN (SYNTENIN)

1.27

4.78

4.42

SRV_00332_a_at

glucose-6-phosphate dehydrogenase

1.32

4.55

3.35

SRV_00292_a_at

PHOSPHOMANNOMUTASE 2

1.14

2.61

2.65

SRV_01737_a_at

UDP-N-ACTEYLGLUCOSAMINE PYROPHOSPHORYLASE 1

1.84

2.18

2.59

SRV_05108_a_at

PHOSPHOSERINE AMINOTRANSFERASE 1

1.12

1.97

2.48

C_s_at

ALDOLASE A, FRUCTOSE-BISPHOSPHATE

1.15

2.42

2.27

A_s_at

ALDOLASE A, FRUCTOSE-BISPHOSPHATE

1.24

3.64

3.39

SRV_00129_a_at

ALDOLASE B, FRUCTOSE-BISPHOSPHATE

1.26

2.30

2.13

SRV_02002_at

CARBOXYLESTERASE 1 (MONOCYTE/MACROPHAGE SERINE ESTERASE 1)

1.28

3.86

2.38

signal transduction

    

SRV_02657_at

PRE-B-CELL COLONY ENHANCING FACTOR 1

1.61

7.61

7.01

SRV_03054_at

MACROPHAGE RECEPTOR WITH COLLAGENOUS STRUCTURE

2.17

8.20

6.82

SRV_01818_at

THIOREDOXIN

1.19

3.29

3.51

SRV_01313_a_at

GRANULIN

1.45

3.72

3.40

SRV_01462_at

NUCLEAR FACTOR OF KAPPA LIGHT POLYPEPTIDE GENE ENHANCER IN B-CELLS 2 (P49/P100)

1.59

3.67

2.77

SRV_03006_a_at

IQ MOTIF CONTAINING GTPASE ACTIVATING PROTEIN 2

1.23

2.59

2.69

SRV_01480_at

PURINERGIC RECEPTOR P2Y, G-PROTEIN COUPLED, 2

1.47

3.17

2.44

SRV_02894_a_at

CAP, ADENYLATE CYCLASE-ASSOCIATED PROTEIN 1 (YEAST)

1.10

2.09

1.76

SRV_00844_a_at

CHLORIDE INTRACELLULAR CHANNEL 1

1.15

1.95

2.10

membrane

    

SRV_03227_at

NIDOGEN 2 (OSTEONIDOGEN)

1.42

3.69

4.29

SRV_01179_a_at

CD63 ANTIGEN (MELANOMA 1 ANTIGEN)

1.34

3.82

3.97

SRV_02687_s_at

MANNOSE-6-PHOSPHATE RECEPTOR BINDING PROTEIN 1

1.30

4.82

3.55

SRV_04888_a_at

UDP-GLCNAC:BETAGAL BETA-1,3-N-ACETYLGLUCOSAMINYLTRANSFERASE 5

2.41

4.44

3.50

SRV_04819_a_at

TRANSMEMBRANE PROTEIN 49

1.46

3.40

3.20

SRV_04070_a_at

LEUCINE RICH REPEAT CONTAINING 59

1.22

2.48

2.78

SRV_03407_at

FER-1-LIKE 3, MYOFERLIN (C. ELEGANS)

1.22

2.67

3.81

SRV_05439_at

HYPOTHETICAL PROTEIN LOC441168

1.40

3.43

2.79

SRV_02874_a_at

BRAIN ABUNDANT, MEMBRANE ATTACHED SIGNAL PROTEIN 1

1.33

2.80

2.31

SRV_04226_a_at

GTPASE, IMAP FAMILY MEMBER 5

1.13

2.05

2.02

transport

    

SRV_00744_a_at

ADIPOSE DIFFERENTIATION-RELATED PROTEIN

3.49

12.49

7.34

SRV_00294_s_at

PROTECTIVE PROTEIN FOR BETA-GALACTOSIDASE (GALACTOSIALIDOSIS)

1.53

5.23

4.73

SRV_02592_a_at

LYSYL OXIDASE-LIKE 1

1.18

2.81

4.59

SRV_03991_a_at

SOLUTE CARRIER FAMILY 15, MEMBER 3

1.36

5.33

3.88

SRV_03562_at

ERO1-LIKE (S. CEREVISIAE)

1.00

2.24

1.77

SRV_04996_at

SOLUTE CARRIER FAMILY 7 (CATIONIC AMINO ACID TRANSPORTER, Y+ SYSTEM), MEMBER 3

1.07

1.75

2.11

SRV_01134_at

ATPASE, H+ TRANSPORTING, LYSOSOMAL 56/58 KDA, V1 SUBUNIT B2

1.04

2.17

1.59

SRV_01220_at

CYTOCHROME C OXIDASE SUBUNIT VIB POLYPEPTIDE 1 (UBIQUITOUS)

1.15

4.51

4.18

SRV_02133_a_at

GOLGI SNAP RECEPTOR COMPLEX MEMBER 2

1.05

2.24

1.88

extracellular region

    

SRV_02948_a_at

fibulin 1

0.93

1.65

2.24

SRV_01275_at

fibulin 1

0.81

1.54

2.10

SRV_02965_at

TISSUE FACTOR PATHWAY INHIBITOR 2

3.56

3.04

2.56

SRV_03142_at

ELASTIN MICROFIBRIL INTERFACER 1

1.11

3.37

3.73

ion binding

    

SRV_00713_a_at

TRANSCOBALAMIN I (VITAMIN B12 BINDING PROTEIN, R BINDER FAMILY)

2.55

23.02

12.98

SRV_02456_at

GASTRIC INTRINSIC FACTOR (VITAMIN B SYNTHESIS)

3.36

20.67

11.63

SRV_07722_at

CHROMOSOME 17 OPEN READING FRAME 27

0.94

4.46

4.63

SRV_05460_at

tripartite motif-containing 39

1.58

3.81

4.07

SRV_05065_at

tripartite motif-containing 17

1.53

2.86

3.46

SRV_00371_a_at

FRUCTOSE-1,6-BISPHOSPHATASE 1

2.40

5.01

3.14

SRV_00741_a_at

ADENOSINE DEAMINASE, RNA-SPECIFIC

1.44

3.76

2.86

SRV_00562_a_at

PROSTAGLANDIN-ENDOPEROXIDE SYNTHASE 1 (PROSTAGLANDIN G/H SYNTHASE AND CYCLOOXYGENASE)

1.29

2.05

2.54

SRV_05448_at

ATPase, Ca++ transporting, cardiac muscle, slow twitch 2

0.87

2.16

2.13

SRV_02724_at

METHIONINE ADENOSYLTRANSFERASE II, ALPHA

1.66

2.06

1.56

SRV_00449_a_at

LATENT TRANSFORMING GROWTH FACTOR BETA BINDING PROTEIN 1

1.05

1.79

3.15

SRV_00131_a_at

SECRETED PROTEIN, ACIDIC, CYSTEINE-RICH (OSTEONECTIN)

1.19

1.99

2.74

SRV_04896_a_at

TRANSKETOLASE (WERNICKE-KORSAKOFF SYNDROME)

1.44

4.02

2.52

SRV_02047_at

ANNEXIN A2

1.29

2.15

2.45

SRV_01345_at

INOSITOL 1,4,5-TRIPHOSPHATE RECEPTOR, TYPE 3

1.19

2.80

2.35

SRV_12418_at

MYOSIN, LIGHT POLYPEPTIDE 9, REGULATORY

1.01

1.99

2.20

SRV_01649_at

RETICULOCALBIN 1, EF-HAND CALCIUM BINDING DOMAIN

1.16

3.01

2.68

Protein binding/transport

    

SRV_03206_at

V-SET AND IMMUNOGLOBULIN DOMAIN CONTAINING 4

1.90

13.14

9.17

SRV_00797_a_at

SERPIN PEPTIDASE INHIBITOR, CLADE H (HEAT SHOCK PROTEIN 47), MEMBER 1, (COLLAGEN BINDING PROTEIN 1)

1.77

4.67

4.79

SRV_04964_a_at

TUBULIN, BETA 6

1.06

2.53

2.55

SRV_03477_a_at

TRANSMEMBRANE PROTEIN 4

1.59

2.22

2.39

SRV_02085_at

FK506 BINDING PROTEIN 1B, 12.6 KDA

1.29

1.71

2.18

SRV_02652_a_at

PROTEIN DISULFIDE ISOMERASE FAMILY A, MEMBER 6

1.28

2.16

1.99

SRV_02814_at

DNAJ (HSP40) HOMOLOG, SUBFAMILY B, MEMBER 1

2.35

4.29

1.73

SRV_03255_a_at

AHA1, ACTIVATOR OF HEAT SHOCK 90 KDA PROTEIN ATPASE HOMOLOG 1 (YEAST)

1.07

2.14

1.53

SRV_05534_at

HYPOTHETICAL PROTEIN MGC16212

1.74

4.05

3.73

SRV_00840_a_at

COLD INDUCIBLE RNA BINDING PROTEIN

1.03

2.46

3.20

SRV_01147_a_at

BIGLYCAN

0.99

2.01

2.90

SRV_05461_x_at

tripartite motif-containing 39

1.32

2.53

2.76

SRV_02070_a_at

CYSTEINE AND GLYCINE-RICH PROTEIN 1

1.27

2.22

2.46

SRV_00257_at

KERATIN 18

1.12

1.93

2.44

SRV_04005_at

KDEL (LYS-ASP-GLU-LEU) ENDOPLASMIC RETICULUM PROTEIN RETENTION RECEPTOR 3

0.90

2.07

2.06

SRV_02647_a_at

ARP2 ACTIN-RELATED PROTEIN 2 HOMOLOG (YEAST)

1.23

2.33

1.93

SRV_01234_a_at

CATENIN (CADHERIN-ASSOCIATED PROTEIN), ALPHA 1, 102 KDA

0.98

1.43

2.05

SRV_01504_a_at

PHOSPHOGLUCONATE DEHYDROGENASE

1.19

2.20

1.50

SRV_05174_a_at

THREE PRIME REPAIR EXONUCLEASE 2

1.57

5.55

5.02

protein modification

    

SRV_04305_a_at

GLYCINE N-METHYLTRANSFERASE

1.24

1.84

3.49

SRV_01832_a_at

UBIQUITIN-CONJUGATING ENZYME E2L 3

1.04

2.09

1.99

SRV_00309_at

TRANSGLUTAMINASE 1 (K POLYPEPTIDE EPIDERMAL TYPE I, PROTEIN-GLUTAMINE-GAMMA-GLUTAMYLTRANSFERASE)

3.22

16.60

14.36

SRV_02093_a_at

HEAT SHOCK 70 KDA PROTEIN 9B (MORTALIN-2)

1.35

3.91

2.79

SRV_02989_at

HEAT SHOCK 70 KDA PROTEIN 8

2.28

6.93

2.73

SRV_01225_at

CRYSTALLIN, ALPHA B

1.27

3.35

2.38

SRV_05456_a_at

UBIQUITIN SPECIFIC PEPTIDASE 2

1.27

2.56

2.00

SRV_05457_a_at

UBIQUITIN SPECIFIC PEPTIDASE 2

1.26

2.28

1.89

SRV_11417_a_at

MATRIX METALLOPEPTIDASE 1 (INTERSTITIAL COLLAGENASE)

5.26

13.96

3.65

SRV_04306_at

GLYCINE N-METHYLTRANSFERASE

1.03

2.15

4.66

SRV_00327_a_at

CATHEPSIN K (PYCNODYSOSTOSIS)

1.37

3.23

3.94

cellular process

    

SRV_11663_a_at

TIMP METALLOPEPTIDASE INHIBITOR 1

1.96

24.74

23.31

SRV_04387_at

RETINOIC ACID RECEPTOR RESPONDER (TAZAROTENE INDUCED) 1

1.64

6.63

9.22

SRV_03285_at

RELATED RAS VIRAL (R-RAS) ONCOGENE HOMOLOG 2

1.76

5.07

4.97

SRV_04911_at

SIMILAR TO THIOREDOXIN DOMAIN-CONTAINING 2

1.34

3.15

3.20

SRV_01534_at

PROTEIN PHOSPHATASE 1, CATALYTIC SUBUNIT, ALPHA ISOFORM

1.15

2.04

2.18

SRV_04858_at

POLY (ADP-RIBOSE) POLYMERASE FAMILY, MEMBER 9

0.97

2.36

2.15

SRV_03421_a_at

LR8 PROTEIN

1.31

1.95

2.02

SRV_11406_at

V-YES-1 YAMAGUCHI SARCOMA VIRAL RELATED ONCOGENE HOMOLOG

1.37

2.46

2.12

other

    

SRV_03887_at

DYNEIN, CYTOPLASMIC 1, LIGHT INTERMEDIATE CHAIN 1

1.31

2.42

2.20

SRV_01920_at

poly (ADP-ribose) glycohydrolase

1.31

1.95

2.23

SRV_00155_a_at

COAGULATION FACTOR XIII, A1 POLYPEPTIDE

1.20

2.46

2.35

SRV_01367_a_at

KERATIN 8

1.19

2.90

3.29

SRV_00775_at

ARGINASE, TYPE II

1.44

4.08

6.06

SRV_11767_a_at

INTERFERON INDUCED TRANSMEMBRANE PROTEIN 5

1.17

2.74

4.24

SRV_07726_a_at

MACROPHAGE EXPRESSED GENE 1

1.69

4.25

3.18

SRV_01302_at

GUANYLATE BINDING PROTEIN 4

1.07

2.39

2.64

SRV_02761_at

ARGININE-RICH, MUTATED IN EARLY STAGE TUMORS

1.10

2.17

1.99

SRV_03758_a_at

ARRESTIN DOMAIN CONTAINING 2

0.90

5.48

8.72

Table 2

Genes which were significantly down-regulated at any time point. Numbers indicate fold change at that time point.

ID

NAME

24 hr

72 hr

144 hr

transcription

    

SRV_04230_at

CHROMOSOME X OPEN READING FRAME 15

0.73

0.44

0.50

SRV_01344_a_at

INTERFERON REGULATORY FACTOR 2

1.02

0.47

0.50

SRV_01768_a_at

TAF9 RNA POLYMERASE II, TATA BOX BINDING PROTEIN (TBP)-ASSOCIATED FACTOR, 32 KDA

0.84

0.44

0.50

SRV_03843_a_at

MEDIATOR OF RNA POLYMERASE II TRANSCRIPTION, SUBUNIT 31 HOMOLOG (YEAST)

0.95

0.50

0.45

SRV_01892_at

ZINC FINGER PROTEIN 282

0.98

0.39

0.42

translation

    

SRV_03800_a_at

MITOCHONDRIAL RIBOSOMAL PROTEIN S7

1.13

0.50

0.54

SRV_03598_at

MITOCHONDRIAL RIBOSOMAL PROTEIN L19

0.73

0.49

0.53

SRV_04607_at

PEPTIDE DEFORMYLASE-LIKE PROTEIN

1.01

0.46

0.50

SRV_04925_a_at

HYPOTHETICAL PROTEIN MGC11102

1.01

0.43

0.48

SRV_01958_at

EUKARYOTIC TRANSLATION INITIATION FACTOR 4E BINDING PROTEIN 3

1.05

0.32

0.31

Natural Killer cell mediated cytotoxicity

    

AE_at

TUBULIN, BETA 2C

0.88

0.52

0.49

Apoptosis

    

SRV_11815_at

CASP2 AND RIPK1 DOMAIN CONTAINING ADAPTOR WITH DEATH DOMAIN

0.70

0.45

0.52

SRV_01489_at

PRKC, APOPTOSIS, WT1, REGULATOR

0.88

0.43

0.44

ion binding/transport

    

SRV_03020_at

TRAF-TYPE ZINC FINGER DOMAIN CONTAINING 1

0.85

0.49

0.53

SRV_01742_at

SPECTRIN, ALPHA, NON-ERYTHROCYTIC 1 (ALPHA-FODRIN)

0.82

0.46

0.52

SRV_02131_a_at

PEPTIDASE (MITOCHONDRIAL PROCESSING) BETA

0.80

0.48

0.51

SRV_02733_at

MITOCHONDRIAL INTERMEDIATE PEPTIDASE

0.59

0.39

0.40

SRV_04112_at

HYPOTHETICAL PROTEIN FLJ20699

0.93

0.42

0.39

SRV_00559_a_at

PRIMASE, POLYPEPTIDE 1, 49 KDA

0.79

0.42

0.39

SRV_03126_at

RING FINGER PROTEIN 113A

0.95

0.39

0.39

SRV_03759_at

ATP SYNTHASE, H+ TRANSPORTING, MITOCHONDRIAL F0 COMPLEX, SUBUNIT S (FACTOR B)

0.91

0.30

0.25

SRV_01177_a_at

ECTONUCLEOSIDE TRIPHOSPHATE DIPHOSPHOHYDROLASE 1

1.19

0.52

0.49

SRV_04638_a_at

MEMBRANE-ASSOCIATED RING FINGER (C3HC4) 7

0.78

0.44

0.47

SRV_03403_at

MAKORIN, RING FINGER PROTEIN, 1

1.02

0.55

0.48

SRV_02137_at

GUANINE DEAMINASE

0.93

0.36

0.36

SRV_12156_at

TUMOR PROTEIN D52

0.93

0.58

0.45

SRV_02173_at

CHONDROITIN SULFATE PROTEOGLYCAN 3 (NEUROCAN)

1.38

0.57

0.20

metabolic process

    

SRV_02346_a_at

GLUTATHIONE S-TRANSFERASE OMEGA 1

1.04

0.54

0.47

SRV_04215_at

PHOSPHOGLUCOMUTASE 2

1.08

0.57

0.46

SRV_04397_at

NITRILASE FAMILY, MEMBER 2

0.86

0.49

0.46

SRV_03369_at

NON-METASTATIC CELLS 7, PROTEIN EXPRESSED IN (NUCLEOSIDE-DIPHOSPHATE KINASE)

1.00

0.55

0.43

SRV_00123_at

AMINOLEVULINATE, DELTA-, DEHYDRATASE

0.71

0.49

0.31

SRV_00160_s_at

FUMARYLACETOACETATE HYDROLASE (FUMARYLACETOACETASE)

0.83

0.61

0.49

SRV_00135_at

ASPARTOACYLASE (CANAVAN DISEASE)

0.92

0.30

0.22

SRV_01499_at

6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BIPHOSPHATASE 1

0.88

0.65

0.47

SRV_11745_at

ACYL-COENZYME A OXIDASE 3, PRISTANOYL

0.87

0.51

0.47

SRV_03094_at

LIPOIC ACID SYNTHETASE

0.83

0.47

0.47

SRV_05217_a_at

SERINE DEHYDRATASE-LIKE

1.03

0.52

0.33

transport

    

SRV_03906_at

HEMATOPOIETIC STEM/PROGENITOR CELLS 176

0.81

0.49

0.58

SRV_04743_a_at

HYPOTHETICAL PROTEIN FLJ22028

0.98

0.54

0.50

SRV_02065_a_at

ADAPTOR-RELATED PROTEIN COMPLEX 2, MU 1 SUBUNIT

0.90

0.59

0.48

SRV_03218_a_at

GABA(A) RECEPTOR-ASSOCIATED PROTEIN-LIKE 2

0.93

0.28

0.37

SRV_05300_a_at

SFT2 DOMAIN CONTAINING 2

0.91

0.31

0.29

SRV_05537_a_at

TRAFFICKING PROTEIN PARTICLE COMPLEX 6B

0.95

0.49

0.34

SRV_02033_a_at

SELENIUM BINDING PROTEIN 1

1.05

0.58

0.45

protein binding/modification

    

SRV_04235_at

hypothetical protein FLJ11280

0.68

0.44

0.56

SRV_02678_a_at

M-PHASE PHOSPHOPROTEIN 6

0.84

0.45

0.51

SRV_02198_a_at

GLUTAMYL-PROLYL-TRNA SYNTHETASE

0.94

0.52

0.48

SRV_01481_at

PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN 1

1.05

0.56

0.49

SRV_01495_at

PYRUVATE DEHYDROGENASE KINASE, ISOZYME 2

1.04

0.41

0.31

SRV_04077_a_at

UBIQUITIN-CONJUGATING ENZYME E2R 2

0.78

0.51

0.47

SRV_04977_s_at

CNDP DIPEPTIDASE 2 (METALLOPEPTIDASE M20 FAMILY)

1.27

0.49

0.22

SRV_04977_at

CNDP DIPEPTIDASE 2 (METALLOPEPTIDASE M20 FAMILY)

1.20

0.46

0.22

SRV_01825_at

UBIQUITIN-CONJUGATING ENZYME E2B (RAD6 HOMOLOG)

0.90

0.47

0.51

RNA binding/processing

    

SRV_03823_at

RNA BINDING MOTIF PROTEIN, X-LINKED 2

0.80

0.47

0.54

SRV_03721_at

SYF2 HOMOLOG, RNA SPLICING FACTOR (S. CEREVISIAE)

0.96

0.46

0.49

SRV_03417_at

MITOCHONDRIAL RIBOSOMAL PROTEIN S28

0.86

0.51

0.47

SRV_03836_at

EXOSOME COMPONENT 1

1.03

0.46

0.46

cell cycle/cell division

    

SRV_05218_a_at

COILED-COIL DOMAIN CONTAINING 5 (SPINDLE ASSOCIATED)

0.68

0.36

0.46

SRV_03244_a_at

FREQUENTLY REARRANGED IN ADVANCED T-CELL LYMPHOMAS 2

0.89

0.38

0.46

SRV_05024_at

ZW10 INTERACTOR

0.96

0.41

0.44

SRV_00804_at

CDC6 CELL DIVISION CYCLE 6 HOMOLOG (S. CEREVISIAE)

0.70

0.50

0.42

SRV_03256_at

TPX2, MICROTUBULE-ASSOCIATED, HOMOLOG (XENOPUS LAEVIS)

0.91

0.41

0.51

SRV_04156_at

CELL DIVISION CYCLE ASSOCIATED 8

0.71

0.43

0.50

SRV_03593_at

DISCS, LARGE HOMOLOG 7 (DROSOPHILA)

0.66

0.39

0.49

SRV_14350_at

NIMA (NEVER IN MITOSIS GENE A)-RELATED KINASE 3

0.96

0.42

0.30

SRV_02556_at

SMC4 STRUCTURAL MAINTENANCE OF CHROMOSOMES 4-LIKE 1 (YEAST)

0.69

0.43

0.47

SRV_03257_at

TPX2, MICROTUBULE-ASSOCIATED, HOMOLOG (XENOPUS LAEVIS)

0.79

0.35

0.45

SRV_02235_at

KINESIN FAMILY MEMBER 11

0.53

0.31

0.44

SRV_01290_at

FERRITIN, HEAVY POLYPEPTIDE 1

1.00

0.54

0.42

SRV_02151_a_at

CENTRIN, EF-HAND PROTEIN, 2

0.65

0.39

0.39

SRV_04253_a_at

NUCLEOLAR AND SPINDLE ASSOCIATED PROTEIN 1

0.62

0.28

0.37

SRV_05141_at

CYCLIN-DEPENDENT KINASE INHIBITOR 2C (P18, INHIBITS CDK4)

0.85

0.57

0.37

SRV_00033_copy4_at

T-cell acute lymphocytic leukemia 1

1.02

0.47

0.36

SRV_00033_at

T-cell acute lymphocytic leukemia 1

0.97

0.44

0.35

SRV_00033_copy2_at

T-cell acute lymphocytic leukemia 1

0.96

0.46

0.34

SRV_00033_copy1_at

T-cell acute lymphocytic leukemia 1

0.96

0.44

0.33

SRV_00033_copy3_at

T-cell acute lymphocytic leukemia 1

0.94

0.44

0.33

membrane

    

SRV_04260_at

CHROMOSOME 9 OPEN READING FRAME 46

1.05

0.56

0.47

SRV_04763_at

CHROMOSOME 10 OPEN READING FRAME 57

1.24

0.46

0.42

SRV_04650_a_at

TRANSMEMBRANE 6 SUPERFAMILY MEMBER 1

1.00

0.47

0.32

SRV_05571_a_at

OXIDATION RESISTANCE 1

0.77

0.37

0.42

SRV_03611_a_at

TRANSLOCASE OF OUTER MITOCHONDRIAL MEMBRANE 70 HOMOLOG A (YEAST)

0.97

0.55

0.48

kinase activity

    

SRV_05333_at

RIO kinase 3 (yeast)

1.06

0.47

0.52

SRV_05450_a_at

INTEGRIN BETA 1 BINDING PROTEIN 3

0.87

0.53

0.46

SRV_01863_at

VACCINIA RELATED KINASE 1

0.61

0.39

0.51

pinocytosis/endocytosis

    

SRV_00866_at

DISABLED HOMOLOG 2, MITOGEN-RESPONSIVE PHOSPHOPROTEIN (DROSOPHILA)

0.84

0.49

0.43

DNA damage

    

SRV_04199_at

NEI ENDONUCLEASE VIII-LIKE 3 (E. COLI)

0.75

0.41

0.37

SRV_02222_at

HUS1 CHECKPOINT HOMOLOG (S. POMBE)

0.72

0.45

0.57

muscle development/contraction

    

SRV_01033_a_at

INTERFERON-RELATED DEVELOPMENTAL REGULATOR 1

1.18

0.38

0.53

SRV_05143_a_at

MYOSIN, LIGHT POLYPEPTIDE 1, ALKALI; SKELETAL, FAST

0.79

0.50

0.49

SRV_00058_s_at

tropomyosin

0.89

0.53

0.48

other

    

SRV_01932_a_at

FICOLIN (COLLAGEN/FIBRINOGEN DOMAIN CONTAINING) 3 (HAKATA ANTIGEN)

1.03

0.58

0.46

SRV_05356_s_at

FAMILY WITH SEQUENCE SIMILARITY 58, MEMBER A

0.89

0.46

0.47

SRV_02972_at

GLUTAREDOXIN 5 HOMOLOG (S. CEREVISIAE)

0.97

0.49

0.49

SRV_05356_at

FAMILY WITH SEQUENCE SIMILARITY 58, MEMBER A

1.09

0.58

0.58

SRV_05263_at

SOLUTE CARRIER FAMILY 39 (ZINC TRANSPORTER), MEMBER 3

0.73

0.45

0.51

SRV_04739_a_at

ZINC FINGER PROTEIN 403

0.97

0.49

0.51

SRV_03830_at

SHWACHMAN-BODIAN-DIAMOND SYNDROME

0.94

0.47

0.46

SRV_03448_at

COILED-COIL DOMAIN CONTAINING 59

0.89

0.42

0.44

SRV_02223_a_at

ISOPENTENYL-DIPHOSPHATE DELTA ISOMERASE 1

0.89

0.37

0.43

SRV_04160_at

SDA1 DOMAIN CONTAINING 1

0.88

0.48

0.42

SRV_05216_at

SERUM AMYLOID A-LIKE 1

0.82

0.42

0.42

SRV_04991_a_at

MYC INDUCED NUCLEAR ANTIGEN

0.90

0.41

0.39

SRV_00134_a_at

ARGININOSUCCINATE LYASE

1.10

0.44

0.36

SRV_05376_at

WILLIAMS BEUREN SYNDROME CHROMOSOME REGION 27

0.84

0.36

0.31

Table 3

Significant (p ≤ 0.05 geometric mean p-value) functional groups obtained from functional annotation using DAVID.

 

Ontology

Number of Genes

p-value

 

Ontology

Number of Genes

p-value

Functional Group 1

response to biotic stimulus

25

<0.001

Functional Group 5

water-soluble vitamin metabolism

4

0.02

<0.001

immune response

21

<0.001

0.033

vitamin metabolism

4

0.03

 

defense response

22

<0.001

 

pyridine nucleotide metabolism

3

0.07

Functional Group 2

cation binding

34

0.001

Functional Group 6

di-, tri-valent inorganic cation transport

5

0.006

0.002

ion binding

36

0.004

0.042

metal ion transport

5

0.06

 

metal ion binding

36

0.004

 

cation transport

6

0.22

Functional Group 3

innate immunity

4

0.001

Functional Group 7

bcr protein

3

0.02

0.005

immune response

5

0.004

0.045

molecular chaperone

4

0.02

 

innate immune response

4

0.007

 

Heat shock protein Hsp70

3

0.03

 

complement activation

3

0.02

 

Heat shock protein 70

3

0.03

     

antigen processing and presentation

4

0.09

     

cell surface

3

0.20

Functional Group 4

lysosome

7

0.002

    

0.008

lysosome

7

0.009

Functional Group 8

response to unfolded protein

5

0.02

 

lytic vacuole

7

0.009

0.048

response to protein stimulus

5

0.02

 

vacuole

7

0.02

 

chaperone

6

0.26

https://static-content.springer.com/image/art%3A10.1186%2F1471-2164-9-493/MediaObjects/12864_2008_Article_1686_Fig2_HTML.jpg
Figure 2

Expression profiles for cluster 1. Each row represents an individual gene, and each column a post-infection time point. Red coloration indicates increased expression of a gene relative to uninfected animals, and green indicates decreased expression. Genes (Cluster 1, n = 158) identified to be significantly up-regulated in response to ATV infection.

https://static-content.springer.com/image/art%3A10.1186%2F1471-2164-9-493/MediaObjects/12864_2008_Article_1686_Fig3_HTML.jpg
Figure 3

Expression profiles for cluster 2. Each row represents an individual gene, and each column a post-infection time point. Red coloration indicates increased expression of a gene relative to uninfected animals, and green indicates decreased expression. Genes (Cluster 2, n = 105) identified to be significantly down-regulated in response to ATV infection.

Genes Up-regulated in Response to ATV

Across all time points, the majority of up-regulated genes were related to immune response or other related functions, such as inflammation and apoptosis. Other up-regulated genes pertained to gene functions such as ion binding and transport, membrane related functions, and protein binding and modification. Twenty-three genes (represented by 26 probe sets) demonstrated 2-fold or greater changes at 24 hours post-infection, all of which were up-regulated. Ten of these 23 have functions pertaining to immune response. Of the remaining highly expressed genes, one was associated with inflammation, two to regulation of apoptosis, three to ion binding, three to protein binding and modification, one to transport, one to the extracellular constituent, and one to membrane and glycolipids. Many of these genes showed increasing transcript abundances over time. At 72 hours post infection, 43 genes had a greater than 5-fold change, and 40 genes had a greater than 5-fold change at 144 hours. The highest expression level, 91-fold increase at 144 hours, was observed for interferon-induced protein with tetracopeptide repeats 5 (IFIT5).

Genes Down-regulated in Response to ATV

In contrast to the very high fold changes observed among up-regulated genes, the largest fold change observed among down-regulated genes was approximately 4.9-fold, in chondroitin sulfate proteoglycan (NCAN). Five down-regulated genes each code for regulation of transcription and translation. An additional 15 down-regulated genes correspond to 20 probe sets that have functions associated with cell division and mitosis, which was not observed in the up-regulated genes. Other notable down-regulated gene ontologies include one gene corresponding to pinocytosis and endocytosis, and one gene related to natural killer cell mediated cytotoxicity.

Validation of Microarray Results Using Quantitative Real-time PCR

We used qPCR to estimate fold changes for nine genes to verify our microarray data (Table 4). For five of the nine genes investigated (56%; Myxovirus resistance 1, Macrophage receptor with collagenous structure, Complement component 3, Cyclin dependant kinase inhibitor 1B, Vaccinia related kinase 1) there is good agreement between the microarray and qPCR data. In genes where the microarray estimates of fold change were modest (Serine dehydratase like, Hemoglobin gamma alpha, Glycogen synthase kinase, Programmed cell death 8) there is poorer agreement between fold change estimates from these two technologies. However, for this latter group of genes with modest fold change values, the microarray and qPCR data were always within four fold of each other. These results demonstrate that we were able to verify robust differences that were suggested by the microarray data.
Table 4

Fold changes obtained from microarray and from quantitative real-time PCR.

Gene name

 

Microarray

qPCR

 
 

24

72

24

72

Myxovirus resistance 1 MX1

3.13

29.23

5.97

24.44

Macrophage receptor with collagenous structure MARCO

2.17

8.20

3.36

15.24

Complement component 3 C3

1.80

9.79

2.14

14.78

Cyclin dependant kinase inhibitor 1B CDKN1B

-1.17

-1.74

-2.26

-3.16

Vaccinia related kinase 1 VRK1

-1.64

-2.58

-1.23

-1.88

Serine dehydratase like SDSL

1.03

-1.92

-1.35

-1.01

Hemoglobin gamma alpha HBG1

-1.01

-1.02

-1.54

-1.87

Glycogen synthase kinase GSK3A

-1.07

-1.08

-1.13

2.76

Programmed cell death 8 PDCD8

1.13

-1.10

1.30

1.85

Analyses to identify proliferation gene expression signatures

Comparison of gene expression after ATV and tail amputation identified 25 genes that are significantly up-regulated in both experimental frameworks (Table 5). No significantly down-regulated genes were identified in common. Several of the commonly up-regulated genes appear to be related to humoral immunity, and membrane and extracellular matrix related functions. Additionally, general stress response genes such as heat shock 70 kDa protein 5 were similarly regulated. None of the cell cycle genes that are significantly up-regulated during tail regeneration were identified in this study. Thus, there was no evidence of cell proliferation by spleen cells after ATV infection.
Table 5

Genes expressed in both ATV infection and spinal cord injury

Gene ID

Gene Name

Gene Ontology

SRV_00294_s_at

protective protein for beta-galactosidase (galactosialidosis)

proteolysis, protein transport

SRV_00309_at

transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-gamma-glutamyltransferase)

membrane, cell envelope, protein modification

SRV_00327_a_at

cathepsin K (pycnodysostosis)

proteolysis

SRV_00330_at

cytochrome b-245, beta polypeptide (chronic granulomatous disease)

humoral response, inflammatory response

SRV_00371_a_at

fructose-1,6-bisphosphatase 1

metal ion binding (zinc)

SRV_00442_at

solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1

immune response, ion transport

SRV_00713_a_at

transcobalamin I (vitamin B12 binding protein, R binder family)

ion transport/binding (cobalt)

SRV_00744_a_at

adipose differentiation-related protein

fatty acid transport, extracellular region

SRV_01179_a_at

CD63 antigen (melanoma 1 antigen)

endosome, membrane

SRV_01342_at

interferon regulatory factor 1

immune response, transcription

SRV_01351_at

jun B proto-oncogene

transcription

SRV_01818_at

thioredoxin

signal transduction

SRV_02399_a_at

matrix metalloproteinase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)

extracellular matrix, apoptosis, proteolysis

SRV_02456_at

gastric intrinsic factor (vitamin B synthesis)

ion transport/binding (cobalt)

SRV_02516_at

heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa)

anti-apoptosis, endoplasmic reticulum

SRV_02586_at

lectin, galactoside-binding, soluble, 3 binding protein

cell adhesion, cellular defense response, signal transduction

SRV_03054_at

macrophage receptor with collagenous structure

signal transduction

SRV_04604_at

interferon induced with helicase c domain 1

innate immune response, regulation of apoptosis, response to virus

SRV_04819_a_at

transmembrane protein 49

membrane, endoplasmic reticulum

SRV_04888_a_at

UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5

membrane, CNS development

SRV_04911_at

thioredoxin domain containing 2 (spermatozoa)

cell redox homeostasis

SRV_04964_a_at

tubulin beta MGC4083

nucleotide binding, protein polymerization

SRV_07726_a_at

macrophage expressed gene 1

none

SRV_11417_a_at

matrix metalloproteinase 1 (interstitial collagenase)

proteolysis, ion binding (zinc)

SRV_11663_a_at

tissue inhibitor of metalloproteinase 1 (erythroid potentiating activity, collagenase inhibitor)

enzyme inhibitor, cell proliferation

SRV_00294_s_at

protective protein for beta-galactosidase (galactosialidosis)

proteolysis, protein transport

Discussion and conclusion

Emerging infectious diseases are implicated in the global decline of amphibians and other animals [3, 4951]. There is urgent need to develop understanding of amphibian immunological responses to pathogens and to identify host genes that may be important in disease resistance. Our study shows that functional genomics provides a means to rapidly meet these needs. We infected Mexican axolotls from the Ambystoma Genetic Stock Center with a viral pathogen that is clearly affecting tiger salamander populations in nature [10, 1315, 19]. Our results show that ATV infection induces transcriptional changes of genes that are known to function in vertebrate immunity. Below we discuss the transcriptional response in more detail and suggest hypotheses to explain why ATV is often lethal to axolotls and other tiger salamanders.

We detected significant gene expression changes 24 hours post infection. Many of these gene expression changes likely reflect transcription within lymphocytes, as they are the predominant cell type in the spleen of juvenile and adult axolotls [52]. Indeed, the functions of many of these genes are associated with neutrophil, dendritic, and macrophage cell functions, including cytokine signaling (chemokine (C-X-C motif) receptor 4), phagocytosis and destruction of phagocytised particles (disabled homolog 2, mitogen-responsive phosphoprotein, neutrophil cytosolic factor 2, lysosomal-associated membrane protein 1, RAS homolog gene family, member B), complement (complement factor B, complement component 3), and inflammation (pentraxin related gene, rapidly induced by IL-1 beta, cytochrome B-245 beta polypeptide, n-myc and STAT interactor). Up-regulation of complement components that are known to function in the removal of viral particles, and up-regulation of the stress-associated transcription factor jun-b, clearly shows that ATV induced a humoral gene expression response in the axolotl. Further support for this idea was obtained by comparing ATV-induced gene expression changes to changes identified from a previous microarray experiment using A. mexicanum and the same microarray platform. Twenty-five genes that were up-regulated in response to ATV infection were also identified as significantly up-regulated during regeneration [31]. In both microarray studies, blood was not perfused from tissues prior to tissue collection and it is known that leukocyctes express genes during the early wound-healing phase of spinal cord and limb regeneration. Thus, it seems likely that many of the early gene expression changes that we observed in response to ATV-infection reflect a general, humoral transcriptional response to stress.

In addition to this general humoral response, t he gene expression patterns that we observed suggest that the Mexican axolotl manifests an antiviral transcriptional response that is not unlike that observed in other vertebrates. For example, ATV infection clearly induces an interferon-mediated, antiviral response. Although probe sets for interferon genes are not represented on the GeneChip, we estimate based upon literature surveys that at least 20% of the significant genes that we identified are known in other systems (in vitro and in vivo) to be involved in interferon-mediated transcription [5355]. These genes exhibited some of the largest fold-changes and include two primary transcription factors that compete to activate (interferon regulatory factor 1, up-regulated) and repress (interferon regulatory factor 2, down-regulated) transcription of interferon-alpha and beta (Type 1 interferon), and inferon-inducible genes that recognize and degrade intra-cellular viral nucleic acid (interferon induced with helicase C domain 1). Considering further that four of the most highly enriched functional groups also contained genes relating to the immune response and pathogen response, the results show that axolotls mount a robust anti-viral response from 24–144 hours post-infection.

Given the robust immunological transcription response that we observed, it is curious why ATV is so virulent to tiger salamanders. In the closely related Ranavirus frog virus 3 (FV3), larval Xenopus laevis succomb to FV3 but adults effectively clear virons and develop lasting resistance to future infection [56]. Adult resistance in X. laevis is correlated with a significant proliferation of cytotoxic CD8+ T cells in the spleen upon infection (within 6 days), as well as increased mortality upon CD8+ T cell depletion [30, 57]. Mortality events due to ATV are more significant among larvae in natural tiger salamander populations, however metamorphosed adult tiger salamanders are more susceptible than larvae to ATV infection in the lab [18]. It is well established that Mexican axolotls have a less complicated immune system and never develop the type of mature immune response typical of amniote vertebrates [2129, 52]. We did not observe any gene expression changes that would indicate proliferative leukocyte responses in axolotl spleen. Perhaps this is because we used juvenile axolotls that are incapable of such a response. However, it is also possible that ATV maybe more resistant to the immune response mounted by A. mexicanum than FV3 is to the Xenopus immune response. Phylogenetic analyses indicate ATV is more closely related to iridoviruses found in fish than to FV3, which suggests a relatively recent host switch occurring with the introduction of sportfish to areas of the southwestern United States [15]. Iridoviruses found in sportfish have a larger genome and contain more ORFs related to immune evasion than FV3, which could also be related to improved performance of this virus on the salamander host [15]. Further studies are needed to better understand the ontogeny of immunological responses in axolotls, the virulence of different ranaviruses, and the role of innate versus adaptive immunity in ATV infection.

Our study has identified hundreds of new candidate genes for laboratory and field studies of stress and disease in tiger salamanders. Significantly more gene candidates will undoubtedly be discovered using a higher content, 2nd generation microarray that is currently under development. Genomic and bioinformatics tools make Ambystoma a powerful system for wildlife disease research. In particular, molecular information can be quickly cross-referenced from a genetically homogeneous strain that is available for laboratory studies (Mexican axolotl), to other closely related tiger salamander species in North America [20]. Such power is needed to quickly understand how ATV and other pathogens are overwhelming amphibian immune responses and causing population declines in nature.

Declarations

Acknowledgements

We acknowledge funding to SRV from NSF (DBI0443496) and NCRR-NIH-CM (R24RR16344), to AS from NSF DEB-0548145 and to CKB from NCRR-NIH-INBRE (P20RR016741). We acknowledge J. Kerby for help with animal care and surgeries, J. Eastman for statistical assistance, J. Monaghan and J. Smith for assistance with analyses and real time PCR, and J. Walker for molecular assistance.

Authors’ Affiliations

(1)
School of Biological Sciences, Washington State University
(2)
Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky
(3)
Department of Biology, Minot State University

References

  1. Berns DS, Rager B: Emerging infectious diseases: a cause for concern. Isr Med Assoc J. 2000, 2: 919-923.PubMedGoogle Scholar
  2. Rachowicz LJ, Hero JM, Alford RA, Taylor JW, Morgan JAT, Vredenburg VT, Collins JP, Briggs CJ: The novel and endemic pathogen hypotheses: competing explanations for the origin of emerging infectious diseases of wildlife. Conserv Biol. 2005, 19: 1441-1448.View ArticleGoogle Scholar
  3. Daszak P, Cunningham AA, Hyatt AD: Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science. 2000, 287: 443-449.PubMedView ArticleGoogle Scholar
  4. Hudson P, Rizzoli JA, Grenfell BT, Heesterbeek H, Dobson AP: The ecology of wildlife diseases. 2000, Oxford, United Kingdom: Oxford University PressGoogle Scholar
  5. Scherbik SV, Kluetzman K, Perelygin AA, Brinton MA: Knock-in of the Oas1b(r) allele into a flavivirus-induced disease susceptible mouse generates the resistant phenotype. Virology. 2007, 368: 232-237.PubMedView ArticleGoogle Scholar
  6. Glass EJ, Jensen K: Resistance and susceptibility to a protozoan parasite of cattle – Gene expression differences in macrophages from different breeds of cattle. Vet Immunol Immunopathol. 2007, 120 (1-2): 20-30.PubMedView ArticleGoogle Scholar
  7. Tumpey TM, Szretter KJ, Van Hoeven N, Katz JM, Kochs G, Haller O, Garcia-Sastre A, Staeheli P: The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. J Virol. 81: 10818-10821.
  8. Woodhams DC, Voyles J, Lips KR, Carey C, Rollins-Smith LA: Predicted disease susceptibility in a panamanian amphibian assemblage based on skin peptide defenses. J Wildl Dis. 2006, 42 (2): 207-218.PubMedView ArticleGoogle Scholar
  9. Chinchar VG: Ranaviruses (family Iridoviridae): emerging cold-blooded killers. Arch Virol. 2002, 147: 447-470.PubMedView ArticleGoogle Scholar
  10. Collins JP, Jones TR, Berna HJ: Conserving genetically distinctive populations: the case of the Huachuca tiger salamander (Ambystoma tigrinum stebbinsi Lowe). Management of amphibians, reptiles and small mammals in North America. Edited by: Szaso RL, Stevenson KC, Patton DR. 1988, US Department of Agriculture/Forest Service General Technical Report RM-166, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO, 45-53.Google Scholar
  11. Cunningham AA, Langton TES, Bennett PM, Lewin JF, Drury SEN, Gough RE, Macgregor : Pathological and microbiological findings from incidents of unusual mortality of the common frog (Rana temporaria). Philos Trans R Soc Lond B Biol Sci. 1996, 351 (1347): 1539-1557.PubMedView ArticleGoogle Scholar
  12. Green DE, Converse KA, Schrader AK: Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996–2001. Ann NY Acad Sci. 2002, 969: 323-339.PubMedView ArticleGoogle Scholar
  13. Bollinger TK, Mao J, Schock D, Brigham RM, Chinchar VG: Pathology, isolation and preliminary molecular characterization of a novel iridovirus from tiger salamanders in Saskatchewan. J Wildl Dis. 1999, 35 (3): 413-429.PubMedView ArticleGoogle Scholar
  14. Jancovich JK, Davidson EW, Morado JF, Jacobs BL, Collins JP: Isolation of a lethal virus from the endangered tiger salamander Ambystoma tigrinum stebbinsi. Dis Aquat Organ. 1997, 31: 161-167.View ArticleGoogle Scholar
  15. Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG, Collins JP, Jacobs BL, Storfer A: Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Mol Ecol. 2005, 14: 213-224.PubMedView ArticleGoogle Scholar
  16. Docherty DE, Meteyer CU, Wang J, Mao JH, Case ST, Chinchar VG: Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events. J Wildl Dis. 2003, 39 (3): 556-566.PubMedView ArticleGoogle Scholar
  17. Jancovich JK, Davidson EW, Seiler A, Jacobs BL, Collins JP: Transmission of the Ambystoma tigrinum virus to alternate hosts. Dis Aquat Organ. 2001, 46: 159-163.PubMedView ArticleGoogle Scholar
  18. Brunner JL, Richards K, Collins JP: Dose and host characteristics influence virulence of ranavirus infections. Oecologia. 2005, 144 (3): 399-406.PubMedView ArticleGoogle Scholar
  19. Storfer A, Alfaro ME, Ridenhour BJ, Jancovich JK, Mech SG, Parris MJ, Collins JP: Phylogenetic concordance analysis shows an emerging pathogen is novel and endemic. Ecol Lett. 2007, 10: 1075-1083.PubMedView ArticleGoogle Scholar
  20. Putta S, Smith JJ, Walker JA, Rondet M, Weisrock DW, Monaghan J, Samuels AK, Kump K, King DC, Maness NJ, Habermann B, Tanaka E, Bryant SV, Gardiner DM, Parichy DM, Voss SR: From biomedicine to natural history research: EST resources for Ambystomatid salamanders. BMC Genomics. 2004, 5 (1): 54-PubMedPubMed CentralView ArticleGoogle Scholar
  21. Kaufman J, Voik H, Wallny HJ: A "minimal essential MHC" and an "unrecognized MHC"; two extremes in selection for polymorphism. Immunol Rev. 1995, 143: 63-88.PubMedView ArticleGoogle Scholar
  22. Tournefier A, Laurens V, Chapusot C, Ducoroy P, Padros MR, Salvadori F, Sammut B: Structure of MHC class I and class II cDNAs and possible immunodeficiency linked to class II expression in the Mexican axolotl. Immunol Rev. 1998, 166: 259-277.PubMedView ArticleGoogle Scholar
  23. Fellah JS, Charlemagne J: Characterizations of an IgY-like low molecular weight immunoglobulin class in the Mexican axolotl. Mol Immunol. 1998, 25: 1377-1386.View ArticleGoogle Scholar
  24. Tournefier A, Fellah S, Charlemagne J: Monoclonal antibodies to axolotl immunoglobulins specific for different heavy chains isotypes expressed by independent lymphocyte subpopulations. Immunol Lett. 1988, 18 (2): 145-148.PubMedView ArticleGoogle Scholar
  25. Charlemagne J, Tournefier A: Anti-horse red blood cells antibody synthesis in the Mexican axolotl (Ambystoma mexicanum). Developmental Immunology. Edited by: salomon JB, Horton JD. 1977, North Holland: Elsevier, 267-275.Google Scholar
  26. Kaufman J, Ferrone S, Flajnik M, Kilb M, Volk H, Parisot R: MHC-like molecules in some non mammalian vertebrates can be detected by some cross-reactive monoclonal antibodies. J Immunol. 1990, 144: 2273-2280.PubMedGoogle Scholar
  27. Koniski AD, Cohen N: Reproducible proliferative responses of salamander (Ambystoma mexicanum) lymphocytes cultured with mitogens in serum-free medium. Dev Comp Immunol. 1992, 16: 441-451.PubMedView ArticleGoogle Scholar
  28. Charlemagne J: Thymus independent antihorse erythrocyte antibody response and suppressor T cells in the Mexican axolotl (Amphibia. Urodela, Ambystoma mexicanum). Immunology. 1979, 36: 643-648.PubMedPubMed CentralGoogle Scholar
  29. Charlemagne J: Regulation of antibody synthesis in the X-irradiated Mexican axolotl. Eur J Immunol. 1981, 11: 717-721.PubMedView ArticleGoogle Scholar
  30. Morales HD, J Robert: Characterization of primary and memory T cell responses against Ranavirus (FV3) in Xenopus laevis. J Virol. 2007, 81 (5): 2240-2248.PubMedPubMed CentralView ArticleGoogle Scholar
  31. Monaghan JR, Walker JA, Page RB, Putta S, Beachy CK, Voss SR: Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum. J Neurochem. 2007, 101: 27-40.PubMedView ArticleGoogle Scholar
  32. Page RB, Monaghan JR, Samuels AK, Smith JJ, Beachy CK, Voss SR: Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander Ambystoma mexicanum. Comp Biochem Physiol C Toxicol Pharmacol. 2007, 145 (1): 15-27.PubMedView ArticleGoogle Scholar
  33. Ihaka R, Gentleman R: R: A language for data analysis and graphics. J Comp Graph Stat. 1996, 5: 299-314.Google Scholar
  34. Bolstad BM, Irizarry RA, Gautier L, Wu Z: Preprocessing high density oligonucleotide assays. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by: Gentleman R, Huber W, Irizarry R, Dudoit S. 2005, 13-16.View ArticleGoogle Scholar
  35. Bolstad B, Collin F, Brettschneider J, Simpson K, Cope L, Irizarry RA, Speed TP: Quality assessment of Affymetrix GeneChip data. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Edited by: Gentleman R, Huber W, Irizarry R, Dudoit S. 2005, New York: Springer, 33-47. [http://www.bioconductor.org]View ArticleGoogle Scholar
  36. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003, 4: 249-264.PubMedView ArticleGoogle Scholar
  37. Draghici S, Khatri P, Eklund AC, Szallasi Z: Reliability and reproducibility issues in DNA microarray measurements. Trends Genet. 2006, 22: 101-109.PubMedPubMed CentralView ArticleGoogle Scholar
  38. Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004, 3: Article 3-Google Scholar
  39. Smyth GK: Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. 2005, New York: Springer, 397-420.View ArticleGoogle Scholar
  40. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995, 57: 289-300.Google Scholar
  41. Sturn A, Quackenbush J, Trajanoski Z: Genesis: cluster analysis of microarray data. Bioinformatics. 2002, 18: 207-208.PubMedView ArticleGoogle Scholar
  42. Sturn A: Cluster analysis for large scale gene expression studies. Masters Thesis. 2000, Institute for Biomedical Engineering, Graz University of Technology, Graz, AustriaGoogle Scholar
  43. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization and Integrated Discovery. Genome Biol. 2003, 4 (5): P3-PubMedView ArticleGoogle Scholar
  44. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25: 402-408.PubMedView ArticleGoogle Scholar
  45. Forson DD, Storfer A: Atrazine increases Ranavirus susceptibility in the Tiger Salamander, Ambystoma tigrinum. Ecol Appl. 2006, 16: 2325-2332.PubMedView ArticleGoogle Scholar
  46. Hefti HP, Frese M, Landis H, Di Paolo C, Aguzzi A, Haller O, Pavlovic J: Human MxA protein protects mice lacking a functional alpha/beta interferon system against La crosse virus and other lethal viral infections. J Virol. 1999, 73: 6984-6991.PubMedPubMed CentralGoogle Scholar
  47. Laan van der LJW, Kangas M, Dopp EA, Broug-Holub E, Elomaa O, Tryggvason K, Kraal G: Macrophage scavenger receptor MARCO: in vitro and in vivo regulation and involvement in the anti-bacterial host defense. Immunol Lett. 1997, 57: 203-208.PubMedView ArticleGoogle Scholar
  48. Grassadonia A, Tinari N, Fiorentino B, Suzuki K, Nakazato M, De Tursi M, Giuliani C, Napolitano G, Singer DS, Iacobelli S, Kohn LD: The 90 k protein increases major histocompatibility complex class I expression and is regulated by hormones, gamma-interferon, and double-strand polynucleotides. Endocrinology. 2004, 145: 4728-4736.PubMedView ArticleGoogle Scholar
  49. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW: Status and trends of amphibian declines and extinctions worldwide. Science. 2004, 306: 1783-1786.PubMedView ArticleGoogle Scholar
  50. Daszak P, Cunningham AA, Hyatt AD: Infectious disease and amphibian declines. Divers Distrib. 2003, 9: 141-150.View ArticleGoogle Scholar
  51. Williams ES, Yuill T, Artois M, Fisher J, SA Haigh: Emerging infectious diseases in wildlife. Rev Sci Tech OIE. 2002, 21: 139-157.Google Scholar
  52. Charlemagne J, Tournefier A: Immunology of amphibians. Handbook of vertebrate immunology. Edited by: Pastoret P-P, Griebel P, Bazin H, Govaerts A. 1998, Academic Press, San Diego, 63-72.Google Scholar
  53. Hossain H, Tchatalbachev S, Chakraborty T: Host gene expression profiling in host-pathogen interactions. Curr Opin Immunol. 2006, 18: 422-429.PubMedView ArticleGoogle Scholar
  54. Manger ID, Relman DA: How the host 'sees' pathogens: global gene expression responses to infection. Curr Opin Immunol. 2000, 12: 215-218.PubMedView ArticleGoogle Scholar
  55. Jenner RG, Young RA: Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol. 2005, 3: 281-294.PubMedView ArticleGoogle Scholar
  56. Maniero GD, Morales H, Gantress J, Robert J: Generation of a long-lasting, protective and neutralizing antibody response to the ranavirus FV3 by Xenopus. Dev Comp Immunol. 2006, 30: 649-657.PubMedView ArticleGoogle Scholar
  57. Robert J, Morales H, Buck W, Cohen N, Marr S, Gantress J: Adaptive immunity and histopathology in frog virus 3-infected Xenopus. Virology. 2005, 332: 667-675.PubMedView ArticleGoogle Scholar

Copyright

© Cotter et al; licensee BioMed Central Ltd. 2008

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.