Ausubel FM: Are innate immune signaling pathways in plants and animals conserved?. Nature Immunology. 2005, 6: 973-79. 10.1038/ni1253.
CAS
PubMed
Google Scholar
Nicaise V, Roux M, Zipfel C: Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiology. 2009, 150: 1638-1647. 10.1104/pp.109.139709.
CAS
PubMed
PubMed Central
Google Scholar
Bent AF, Mackey D: Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annual Review of Phytopathology. 2007, 45: 399-436. 10.1146/annurev.phyto.45.062806.094427.
CAS
PubMed
Google Scholar
Bittel P, Robatzek S: Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology. 2007, 10: 335-341. 10.1016/j.pbi.2007.04.021.
CAS
PubMed
Google Scholar
Niks RE, Marcel TC: Nonhost and basal resistance: how to explain specificity?. New Phytologist. 2009, 182: 817-828. 10.1111/j.1469-8137.2009.02849.x.
PubMed
Google Scholar
Niks RE: Failure of haustorial development as a factor in slow growth and development of Puccinia hordei in partially resistant barley seedlings. Physiological and Molecular Plant Pathology. 1986, 28: 309-322. 10.1016/S0048-4059(86)80073-X.
Google Scholar
O'Connell RJ, Panstruga R: Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist. 2006, 171: 699-718. 10.1111/j.1469-8137.2006.01829.x.
CAS
PubMed
Google Scholar
Heath MC: Cellular interactions between biotrophic fungal pathogens and host or nonhost plants. Canadian Journal of Plant Pathology. 2002, 24: 259-264. 10.1080/07060660209507007.
Google Scholar
Collins NC, Niks RE, Schulze-Lefert P: Resistance to cereal rusts at the plant cell wall - what can we learn from other host-pathogen systems?. Australian Journal of Agricultural Research. 2007, 58: 476-489. 10.1071/AR06065.
CAS
Google Scholar
Hardham AR, Jones DA, Takemoto D: Cytoskeleton and cell wall function in penetration resistance. Current Opinion in Plant Biology. 2007, 10: 342-348. 10.1016/j.pbi.2007.05.001.
CAS
PubMed
Google Scholar
Qi X, Niks RE, Stam P, Lindhout P: Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics. 1998, 96: 1205-1215. 10.1007/s001220050858.
CAS
Google Scholar
Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P: Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics. 1999, 99: 877-884. 10.1007/s001220051308.
CAS
Google Scholar
Jafary H, Szabo LJ, Niks RE: Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with overlapping specificities. Molecular Plant-Microbe Interaction. 2006, 19: 1270-1279. 10.1094/MPMI-19-1270.
CAS
Google Scholar
Jafary H, Albertazzi G, Marcel TC, Niks RE: High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics. 2008, 178: 2327-2339. 10.1534/genetics.107.077552.
CAS
PubMed
PubMed Central
Google Scholar
Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE: A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics. 2007, 114: 487-500. 10.1007/s00122-006-0448-2.
CAS
PubMed
Google Scholar
Marcel TC, B Gorguet M, Truong Ta, Kohutova Z, Vels A, Niks RE: Isolate-specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytologist. 2008, 177: 743-755. 10.1111/j.1469-8137.2007.02298.x.
PubMed
Google Scholar
van Berloo R, Aalbers H, Werkman A, Niks RE: Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Molecular Breeding. 2001, 8: 187-195. 10.1023/A:1013722008561.
CAS
Google Scholar
Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE: Dissection of the barley 2L1.0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Molecular Plant-Microbe Interactions. 2007, 20: 1604-1615. 10.1094/MPMI-20-12-1604.
CAS
PubMed
Google Scholar
Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA: Transcript profiling in host-pathogen interactions. Annual Review of Phytopathology. 2007, 45: 329-369. 10.1146/annurev.phyto.45.011107.143944.
CAS
PubMed
Google Scholar
Jansen RC, Nap JP: Genetical genomics: the added value from segregation. Trends in Genetics. 2001, 17: 388-391. 10.1016/S0168-9525(01)02310-1.
CAS
PubMed
Google Scholar
Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsey M, Waugh R: eQTL analysis in Plants. Plant Biotechnology Journal. 2009, 8: 10-27. 10.1111/j.1467-7652.2009.00460.x.
Google Scholar
Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey MJ: Gene expression quantitative trait locus analysis of 16 000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. The Plant Journal. 2008, 53: 90-101. 10.1111/j.1365-313X.2007.03315.x.
CAS
PubMed
Google Scholar
Potokina E, Druka A, Luo Z, Moscou M, Wise R, Waugh R, Kearsey MJ: Tissue-dependent limited pleiotropy affects gene expression in barley. The Plant Journal. 2008, 56: 287-296. 10.1111/j.1365-313X.2008.03601.x.
CAS
PubMed
Google Scholar
Druka A, Potokina E, Luo Z, Bonar N, Druka I, Zhang L, Marshall DF, Kearsey M, Waugh R: Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp tritici in barley. Theoretical and Applied Genetics. 2008, 117: 261-272. 10.1007/s00122-008-0771-x.
CAS
PubMed
Google Scholar
Chen X, Hackett CA, Niks RE, Hedley PE, Booth C, Druka A, Marcel TC, Vels A, Bayer M, Milne I, Morris J, Ramsay L, Marshall D, Cardle L, Waugh R: An eQTL analysis of partial resistance to Puccinia hordei in barley. PLoS ONE. 2010, 5: e8598-10.1371/journal.pone.0008598.
PubMed
PubMed Central
Google Scholar
Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey MJ: SFP genotyping from Affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics. 2007, 176: 789-800. 10.1534/genetics.106.067843.
CAS
PubMed
PubMed Central
Google Scholar
Glazebrook J: Genes controlling expression of defense responses in Arabidopsis: 2001 status. Current Opinion in Plant Biology. 2001, 4: 301-308. 10.1016/S1369-5266(00)00177-1.
CAS
PubMed
Google Scholar
Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szűcs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R: Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009, 10: 582-10.1186/1471-2164-10-582.
PubMed
PubMed Central
Google Scholar
Hansen BG, Halkier BA, Kliebenstein DJ: Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends in Plant Science. 2008, 13: 72-77.
CAS
PubMed
Google Scholar
Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K: Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology. 2005, 58: 585-596. 10.1007/s11103-005-7294-5.
CAS
PubMed
Google Scholar
Shinshi H, Usami S, Ohme-Takagi M: Identification of an ethylene-responsive region in the promoter of tobacco class I chitinase gene. Plant Molecular Biology. 1995, 27: 923-932. 10.1007/BF00037020.
CAS
PubMed
Google Scholar
Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK: NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). American Journal of Human Genetics. 2003, 73: 967-971. 10.1086/378817.
CAS
PubMed
PubMed Central
Google Scholar
Mauch F, Hadwiger LA, Boller T: Antifungal hydrolases in pea tissue. 1. Purification and characterization of two chitinases and β-1,3-glucanase differentially regulated during development and in response to fungal infection. Plant Physiology. 1988, 87: 325-333. 10.1104/pp.87.2.325.
CAS
PubMed
PubMed Central
Google Scholar
Broglie K, Chet I, Holliday M, Cressman R, Biddle Ph, Knowlton S, Mauvais CJ, Broglie R: Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science. 1991, 254: 1194-1197. 10.1126/science.254.5035.1194.
CAS
PubMed
Google Scholar
Zhu Q, Maher EA, Masoud S, Dixon RA, Lamb C: Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology. 1994, 12: 807-812. 10.1038/nbt0894-807.
CAS
Google Scholar
Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK: Genetic engineering of rice for resistance to sheath blight. Bio/Technology. 1995, 13: 686-691. 10.1038/nbt0795-686.
CAS
Google Scholar
Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK: Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theoretical and Applied Genetics. 1999, 98: 1138-1145. 10.1007/s001220051178.
CAS
Google Scholar
Dixon RA: Natural products and plant disease resistance. Nature. 2001, 411: 843-847. 10.1038/35081178.
CAS
PubMed
Google Scholar
Collinge DB, Jensen MK, Lyngkjaer MF, Rung J: How can we exploit functional genomics approaches for understanding the nature of plant defences? Barley as a case study. European Journal of Plant Pathology. 2008, 121: 257-266. 10.1007/s10658-008-9271-8.
CAS
Google Scholar
Glazebrook J: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology. 2005, 43: 205-227. 10.1146/annurev.phyto.43.040204.135923.
CAS
PubMed
Google Scholar
Panstruga R, Schulze-Lefer P: Live and let live: insights into powdery mildew disease and resistance. Molecular Plant Pathology. 2002, 3: 495-502. 10.1046/j.1364-3703.2002.00145.x.
CAS
PubMed
Google Scholar
Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B: A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009, 323: 1360-1363. 10.1126/science.1166453.
CAS
PubMed
Google Scholar
Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J: A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009, 323: 1357-1360. 10.1126/science.1166289.
CAS
PubMed
PubMed Central
Google Scholar
Field B, Jordan F, Osbourn A: First encounters-Deployment of defence-related natural products by plants. New Phytologist. 2006, 172: 193-207. 10.1111/j.1469-8137.2006.01863.x.
CAS
PubMed
Google Scholar
van Loon LC, Rep M, Pieterse CMJ: Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology. 2006, 44: 135-162. 10.1146/annurev.phyto.44.070505.143425.
CAS
PubMed
Google Scholar
Bittel P, Robatzek S: Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology. 2007, 10: 335-341. 10.1016/j.pbi.2007.04.021.
CAS
PubMed
Google Scholar
Wagner C, Schweizer G, Kraemer M, Dehmer-Badani AG, Ordon F, Friedt W: The complex quantitative barley-Rhynchosporium secalis interaction: newly identified QTL may represent already known resistance genes. Theoretical and Applied Genetics. 2008, 118: 113-122. 10.1007/s00122-008-0881-5.
CAS
PubMed
Google Scholar
Tan MYA, Hutten RCB, Celis C, Park TH, Niks RE, Visser RGF, van Eck HJ: The RPi-mcd1 locus from Solanum microdontum involved in resistance to Phytophthora infestans, causing a delay in infection, maps on potato chromosome 4 in a cluster of NBS-LRR genes. Molecular Plant-Microbe Interactions. 2008, 21: 909-918. 10.1094/MPMI-21-7-0909.
CAS
PubMed
Google Scholar
Xiao W, Zhao J, Fan S, Li L, Dai J, Xu M: Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). Theoretical and Applied Genetics. 2007, 115: 501-508. 10.1007/s00122-007-0583-4.
CAS
PubMed
Google Scholar
Zimnoch-Guzowska E, Marczewski W, Lebecka R, Flis B, Schäfer-Pregl R, Salaminin F, Gebhardt C: QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RFLP, and resistance-gene-like markers. Crop Science. 2000, 40: 1156-1167. 10.2135/cropsci2000.4041156x.
CAS
Google Scholar
Pflieger S, Lefebvre V, Caranta C, Blattes A, Goffinet B, Palloix A: Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome. 1999, 42: 1100-1110. 10.1139/gen-42-6-1100.
CAS
PubMed
Google Scholar
Wang GL, Ruan DL, Song WY, Sideris S, Chen L, Pi LY, Zhang S, Zhang Z, Fauquet C, Gaut BS, Whalen MC, Ronald P: Xa21D encodes a receptor-like molecule with a leucine-rich repeat that determines race-specific recognition and is subject to adaptative evolution. The Plant Cell. 1998, 10: 765-779. 10.2307/3870663.
CAS
PubMed
PubMed Central
Google Scholar
Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG: Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. The Plant Cell. 1997, 9: 641-651. 10.2307/3870513.
CAS
PubMed
PubMed Central
Google Scholar
Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D, Fluhr R: The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. The Plant Cell. 1997, 9: 521-532. 10.2307/3870504.
CAS
PubMed
PubMed Central
Google Scholar
Bari R, Jones JD: Role of plant hormones in plant defence responses. Plant Molecular Biology. 2009, 69: 473-88. 10.1007/s11103-008-9435-0.
CAS
PubMed
Google Scholar
Kazan K, Manners JM: Linking development to defense: auxin in plant-pathogen interactions. Trends in Plant Science. 2009, 14: 373-382. 10.1016/j.tplants.2009.04.005.
CAS
PubMed
Google Scholar
Shan L, He P, Li J, Heese A, Peck SC, Nurnberger T, Martin GB, Sheen J: Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host & Microbe. 2008, 4: 17-27.
CAS
Google Scholar
Krishna P: Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation. 2003, 22: 289-297. 10.1007/s00344-003-0058-z.
CAS
PubMed
Google Scholar
Yi HC, Joo S, Nam KH, Lee JS, Kang BG, Kim WT: Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Molecular Biology. 1999, 41: 443-454. 10.1023/A:1006372612574.
CAS
PubMed
Google Scholar
Muessig C, Lisso J, Coll-Garcia D, Altmann T: Molecular analysis of brassinosteroid action. Plant Biology. 2006, 8: 291-296. 10.1055/s-2005-873043.
CAS
Google Scholar
Eulgem T: Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science. 2005, 10: 71-78. 10.1016/j.tplants.2004.12.006.
CAS
PubMed
Google Scholar
Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA: The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics. 2000, 26: 403-410. 10.1038/82521.
CAS
PubMed
Google Scholar
Caldo RA, Nettleton D, Wise RP: Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. The Plant Cell. 2004, 16: 2514-2528. 10.1105/tpc.104.023382.
CAS
PubMed
PubMed Central
Google Scholar
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research. 2002, 30: 4e15-
Google Scholar