Braatne JH, Rood SB, Heilman PE: Life history, ecology, and conservation of riparian cottonwoods in north America. Biology of Populus. Edited by: Stettler RF, Bradshaw Jr HD, Heilman PE, Hincley TM. 1996, Ottawa, Canada: NRC Research Press, 57-85.
Google Scholar
Parolin P: Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann Bot. 2009, 103: 359-376. 10.1093/aob/mcn216.
PubMed Central
PubMed
Google Scholar
Rood SB, Braatne JH, Hughes FMR: Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiol. 2003, 23: 1113-1124.
PubMed
Google Scholar
Rood SB, Patiño S, Coombs K, Tyree MT: Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees. 2000, 14: 248-257. 10.1007/s004680050010.
Google Scholar
Smit BA: Selection of flood-resistant and susceptible seedlings of Populus trichocarpa Torr. & Gray. Can J For Res. 1988, 18: 271-275.
Google Scholar
Sakurai N: Dynamic function and regulation of apoplast in the plant body. J Plant Res. 1998, 111: 133-148. 10.1007/BF02507160.
CAS
Google Scholar
Dietz KJ: Functions and responses of the leaf apoplast under stress. Progress in Botany. 1997, 58: 221-254.
Google Scholar
Haslam RP, Downie AL, Raveton M, Gallardo K, Job D, Pallett KE, John P, Parry MAJ, Coleman JOD: The assessment of enriched apoplastic extracts using proteomic approaches. Ann Appl Biol. 2003, 143: 81-91. 10.1111/j.1744-7348.2003.tb00272.x.
CAS
Google Scholar
Alvarez S, Goodger JQD, Marsh EL, Chen S, Asirvatham VS, Schachtman DP: Characterization of the maize xylem sap proteome. J Proteome Res. 2006, 5: 963-972. 10.1021/pr050471q.
CAS
PubMed
Google Scholar
Biles CL, Martyn RD, Wilson HD: Isozymes and general proteins from various watermelon cultivars and tissue types. HortScience. 1989, 24: 810-812.
CAS
Google Scholar
Buhtz A, Kolasa A, Arlt K, Walz C, Kehr J: Xylem sap protein composition is conserved among different plant species. Planta. 2004, 219: 610-618. 10.1007/s00425-004-1259-9.
CAS
PubMed
Google Scholar
Djordjevic MA, Oakes M, Li DX, Hwang CH, Hocart CH, Gresshoff PM: The Glycine max xylem sap and apoplast proteome. J Proteome Res. 2007, 6: 3771-3779. 10.1021/pr0606833.
CAS
PubMed
Google Scholar
Floerl S, Druebert C, Majcherczyk A, Karlovsky P, Kues U, Polle A: Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biol. 2008, 8: 129-10.1186/1471-2229-8-129.
PubMed Central
PubMed
Google Scholar
Kehr J, Buhtz A, P G: Analysis of xylem sap proteins from Brassica napus. BMC Plant Biol. 2005, 21: 5-11.
Google Scholar
Masuda S, Kamada H, Satoh S: Chitinase in cucumber xylem sap. Biosci Biotechnol Biochem. 2001, 65: 1883-1885. 10.1271/bbb.65.1883.
CAS
PubMed
Google Scholar
Masuda S, Sakuta C, Satoh S: cDNA cloning of a novel lectin-like xylem sap protein and its root-specific expression in cucumber. Plant Cell Physiol. 1999, 40: 1177-1181.
CAS
PubMed
Google Scholar
Rep M, Dekker HL, Vossen JH, de Boer A, Houterman PM, Speijer D, Back JW, de Koster CG, Cornelissen JC: Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. Plant Physiol. 2002, 130: 904-917. 10.1104/pp.007427.
CAS
PubMed Central
PubMed
Google Scholar
Rep M, Dekker HL, Vossen JH, de Boer AD, Houterman PM, de Koster CG, Cornelissen BJC: A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Lett. 2003, 534: 82-86. 10.1016/S0014-5793(02)03788-2.
CAS
PubMed
Google Scholar
Satoh S, Iizuka C, Kikuchi A, Nakamura N, Fujii T: Proteins and carbohydrates in xylem sap from squash root. Plant Cell Physiol. 1992, 33: 841-847.
CAS
Google Scholar
Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye M-T, Pont-Lezica R: Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: Identification by mass spectrometry and bioinformatics. Proteomics. 2005, 5: 212-221. 10.1002/pmic.200400882.
CAS
PubMed
Google Scholar
Biles CL, Abeles FB: Xylem sap proteins. Plant Physiol. 1991, 96: 597-601. 10.1104/pp.96.2.597.
CAS
PubMed Central
PubMed
Google Scholar
Dafoe NJ, Constabel CP: Proteomic analysis of hybrid poplar xylem sap. Phytochemistry. 2009, 70: 856-863. 10.1016/j.phytochem.2009.04.016.
CAS
PubMed
Google Scholar
Diaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros-Barcelo A, Martinez-Gomez P, Hernandez JA: The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Exp Bot. 2006, 57: 3813-3824. 10.1093/jxb/erl138.
CAS
PubMed
Google Scholar
Gau AE, Koutb M, Piotrowski M, Kloppstech K: Accumulation of pathogenesis-related proteins in the apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar Remo. Eur J Plant Pathol. 2004, 110: 703-711. 10.1023/B:EJPP.0000041552.98673.e3.
CAS
Google Scholar
Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J: Towards the proteome of Brassica napus phloem sap. Proteomics. 2006, 6: 896-909. 10.1002/pmic.200500155.
CAS
PubMed
Google Scholar
Lin M-K, Lee Y-J, Lough TJ, Phinney BS, Lucas WJ: Analysis of the pumpkin phloem proteome provides functional insights into angiosperm sieve tube function. Mol Cell Proteomics. 2009, 8: 343-356.
CAS
PubMed
Google Scholar
Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J: Proteomics of cucurbit phloem exudate reveals a network of defense proteins. Phytochemistry. 2004, 65: 1795-1804. 10.1016/j.phytochem.2004.04.006.
CAS
PubMed
Google Scholar
Hartung W, Radin JW, Hendrix DL: Abscisic acid movement into the apoplastic solution of water-stressed cotton leaves. Plant Physiol. 1988, 86: 908-913. 10.1104/pp.86.3.908.
CAS
PubMed Central
PubMed
Google Scholar
Ackerson RC: Synthesis and movement of abscisic acid in water-stressed cotton leaves. Plant Physiol. 1982, 69: 609-613. 10.1104/pp.69.3.609.
CAS
PubMed Central
PubMed
Google Scholar
Cornish K, Zeevaart JAD: Movement of abscisic acid into the apoplast in response to water stress in Xanthium strumarium L. Plant Physiol. 1985, 78: 623-626. 10.1104/pp.78.3.623.
CAS
PubMed Central
PubMed
Google Scholar
Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004, 340: 783-795. 10.1016/j.jmb.2004.05.028.
PubMed
Google Scholar
Bendtsen JD, Kiemer L, Fausbøll A, Brunak S: Non-classical protein secretion in bacteria. BMC Microbiology. 2005, 5: 58-10.1186/1471-2180-5-58.
PubMed Central
PubMed
Google Scholar
Fujihara J, Yasuda T, Kunito T, Fujii Y, Takatsuka H, Moritani T, H T: Two N-linked glycosylation sites (Asn18 and Asn106) are both required for full enzymatic activity, thermal stability, and resistance to proteolysis in mammalian deoxyribonuclease I. Biosci Biotechnol Biochem. 2008, 72: 3197-3205. 10.1271/bbb.80376.
CAS
PubMed
Google Scholar
Knudsen SK, Stensballe A, Franzmann M, Westergaard UB, Otzen DE: Effect of glycosylation on the extracellular domain of the Ag43 bacterial autotransporter: enhanced stability and reduced cellular aggregation. Biochem J. 2008, 412: 563-577. 10.1042/BJ20071497.
CAS
PubMed
Google Scholar
Lige B, Ma S, van Huystee RB: The effects of the site-directed removal of N-glycosylation from cationic peanut peroxidase on its function. Arch Biochem Biophys. 2001, 386: 17-24. 10.1006/abbi.2000.2187.
CAS
PubMed
Google Scholar
O'Neill HG, Redelinghuys P, Schwager SL, Sturrock ED: The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme. Biol Chem. 2008, 389: 1153-1161. 10.1515/BC.2008.131.
PubMed
Google Scholar
Blom N, Gammeltoft S, Brunak S: Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999, 294: 1351-1362. 10.1006/jmbi.1999.3310.
CAS
PubMed
Google Scholar
Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, Millar AH, Whelan J: Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol. 2009, 149: 461-473. 10.1104/pp.108.125989.
CAS
PubMed Central
PubMed
Google Scholar
Tripepi RR, Mitchell CA: Stem hypoxia and root respiration of flooded maple and birch seedlings. Physiol Plantarum. 1984, 60: 567-571. 10.1111/j.1399-3054.1984.tb04929.x.
Google Scholar
Kimmerer TW, Stringer MA: Alcohol dehydrogenase and ethanol in the stems of trees: Evidence for anaerobic metabolism in the vascular cambium. Plant Physiol. 1988, 87: 693-697. 10.1104/pp.87.3.693.
CAS
PubMed Central
PubMed
Google Scholar
Kreuzwieser J, Papadopoulou E, Rennenberg H: Interaction of flooding with carbon metabolism of forest trees. Plant Biol. 2004, 6: 299-306. 10.1055/s-2004-817882.
CAS
PubMed
Google Scholar
Jaeger C, Gessler A, Biller S, Rennenberg H, Kreuzwieser J: Differences in C metabolism of ash species and provenances as a consequence of root oxygen deprivation by waterlogging. J Exp Bot. 2009, 60: 4335-4345. 10.1093/jxb/erp268.
CAS
PubMed
Google Scholar
Kimmerer TW: Alcohol dehydrogenase and pyruvate decarboxylase activity in leaves and roots of eastern cottonwood (Populus deltoides Bartr.) and soybean (Glycine max L.). Plant Physiol. 1987, 84: 1210-1213. 10.1104/pp.84.4.1210.
CAS
PubMed Central
PubMed
Google Scholar
Kreuzwieser J, Kuhnemann F, Martis A, Rennenberg H, Urban W: Diurnal pattern of acetaldehyde emission by flooded poplar trees. Physiol Plantarum. 2000, 108: 79-86. 10.1034/j.1399-3054.2000.108001079.x.
CAS
Google Scholar
Kreuzwieser J, Scheerer U, Rennenberg H: Metabolic origin of acetaldehyde emitted by poplar (Populus tremula x P. alba) trees. J Exp Bot. 1999, 50: 757-765. 10.1093/jexbot/50.335.757.
CAS
Google Scholar
MacDonald RC, Kimmerer TW: Metabolism of transpired ethanol by eastern cottonwood (Populus deltoides Bartr.). Plant Physiol. 1993, 102: 173-179.
CAS
PubMed Central
PubMed
Google Scholar
Telewski FW, Aloni R, Sauter JJ: Physiology of secondary tissues of Populus. Biology of Populus. Edited by: Stettler RF, Bradshaw Jr HD, Heilman PE, Hincley TM. 1996, Ottawa, Canada: NRC Research Press, 57-85.
Google Scholar
Heizmann U, Kreuzwieser J, Schnitzler JP, Bruggemann N, Rennenberg H: Assimilate transport in the xylem sap of pedunculate oak (Quercus robur) saplings. Plant Biol. 2001, 3: 132-138. 10.1055/s-2001-12898.
CAS
Google Scholar
Coleman HD, Yan J, Mansfield SD: Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA. 2009, 106: 13118-13123. 10.1073/pnas.0900188106.
CAS
PubMed Central
PubMed
Google Scholar
Gravatt DA, Kirby CJ: Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiol. 1998, 18: 411-417.
PubMed
Google Scholar
Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B: Biosynthesis of cellulose-enriched tension wood in Populus: Global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J. 2006, 45: 144-165. 10.1111/j.1365-313X.2005.02584.x.
PubMed
Google Scholar
Ricard B, Rivoal J, Spiteri A, Pradet A: Anaerobic stress induces the transcription and translation of sucrose synthase in rice. Plant Physiol. 1991, 95: 669-674. 10.1104/pp.95.3.669.
CAS
PubMed Central
PubMed
Google Scholar
Albrecht G, Mustroph A: Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta. 2003, 217: 252-260.
CAS
PubMed
Google Scholar
Biemelt S, Hajirezaei MR, Melzer M, Albrecht G, Sonnewald U: Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta. 1999, 210: 41-49. 10.1007/s004250050652.
CAS
PubMed
Google Scholar
Akihiro T, Umezawa T, Ueki C, Lobna BM, Mizuno K, Ohta M, Fujimura T: Genomic wide cDNA-AFLP analysis of genes rapidly induced by combined sucrose and ABA treatment in rice cultured cells. FEBS Lett. 2006, 580: 5947-5952. 10.1016/j.febslet.2006.09.065.
CAS
PubMed
Google Scholar
Tang T, Xie H, Wang Y, Lu B, Liang J: The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). J Exp Bot. 2009, 60: 2641-2652. 10.1093/jxb/erp114.
CAS
PubMed
Google Scholar
Wang YT, Yang CY, Chen Y-T, Lin Y, Shaw J-F: Characterization of senescence-associated proteases in postharvest broccoli florets. Plant Physiol Biochem. 2004, 42: 663-670. 10.1016/j.plaphy.2004.06.003.
CAS
PubMed
Google Scholar
Schaller A, Stintzi A: Enzymes in jasmonate biosynthesis - Structure, function, regulation. Phytochemistry. 2009, 70: 1532-1538. 10.1016/j.phytochem.2009.07.032.
CAS
PubMed
Google Scholar
Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Thiec DL, Fluch S, Martin F, et al: Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol. 2007, 144: 347-366. 10.1104/pp.106.094987.
CAS
PubMed Central
PubMed
Google Scholar
Azaiez A, Boyle B, Levée V, A S: Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant-Microbe Interact. 2009, 22: 190-200. 10.1094/MPMI-22-2-0190.
CAS
PubMed
Google Scholar
Bowles DJ: Defense-related proteins in higher plants. Ann Rev Biochem. 1992, 59: 873-907. 10.1146/annurev.bi.59.070190.004301.
Google Scholar
Leah R, Tommerup H, Svendsen I, Mundy J: Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991, 266: 1564-1573.
CAS
PubMed
Google Scholar
Mauch F, Mauch-Mani B, Boller T: Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and b-1,3-glucanase. Plant Physiol. 1988, 88: 936-942. 10.1104/pp.88.3.936.
CAS
PubMed Central
PubMed
Google Scholar
Schlumbaum A, Mauch F, Vogeli U, Boller T: Plant chitinases are potent inhibitors of fungal growth. Nature. 1986, 324: 365-367. 10.1038/324365a0.
CAS
Google Scholar
Doxey AC, Yaish MWF, Moffatt BA, Griffith M, McConkey BJ: Functional divergence in the Arabidopsis b-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol Biol Evol. 2007, 24: 1045-1055. 10.1093/molbev/msm024.
CAS
PubMed
Google Scholar
Kästner B, Tenhaken R, Kauss H: Chitinase in cucumber hypocotyls is induced by germinating fungal spores and by fungal elicitor in synergism with inducers of acquired resistance. Plant J. 1998, 13: 447-454. 10.1046/j.1365-313X.1998.00045.x.
Google Scholar
Mauch F, Staehelin A: Functional implications of the subcellular localization of ethylene-induced chitinase and b-1,3-glucanase in bean leaves. Plant Cell. 1989, 1: 447-457. 10.1105/tpc.1.4.447.
CAS
PubMed Central
PubMed
Google Scholar
Salzer P, Hebe G, Reith A, Zitterell-Haid B, Stransky H, Gaschler K, Hager A: Rapid reaction of spruce cells to elicitors released from ectomycorrhizal fungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular spruce cell inzymes. Planta. 1996, 198: 118-126. 10.1007/BF00197594.
CAS
Google Scholar
Grenier J, Potvin C, Trudel J, Asselin A: Some thaumatin-like proteins hydrolyse polymeric β-1,3-glucans. Plant J. 1999, 19: 4473-4480. 10.1046/j.1365-313X.1999.00551.x.
Google Scholar
Trudel J, Grenier J, Potvin C, Asselin A: Several thaumatin-like proteins bind to β-1,3-glucans. Plant Physiol. 1998, 118: 1431-1438. 10.1104/pp.118.4.1431.
CAS
PubMed Central
PubMed
Google Scholar
Bokma E, Rozeboom HJ, Sibbald M, Dijkstra BW, Beintema JJ: Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis. Eur J Biochem. 2002, 269: 893-901. 10.1046/j.0014-2956.2001.02721.x.
CAS
PubMed
Google Scholar
Broglie KE, Gaynor JJ, Broglie RM: Ethylene-regulated gene expression: molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris. Proc Natl Acad Sci USA. 1986, 83: 6820-6824. 10.1073/pnas.83.18.6820.
CAS
PubMed Central
PubMed
Google Scholar
Petruzzelli L, Kunz C, Waldvogel R, Meins FJ, Leubner-Metzger G: Distinct ethylene- and tissue-specific regulation of β-1,3-glucanases and chitinases during pea seed germination. Planta. 1999, 209: 195-201. 10.1007/s004250050622.
CAS
PubMed
Google Scholar
Vorwerk S, Somerville S, Somerville C: The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci. 2004, 9: 203-209. 10.1016/j.tplants.2004.02.005.
CAS
PubMed
Google Scholar
Bae E-K, Lee H, Lee J-S, Noh E-W, Han M-S, Choi Y-I: Molecular cloning of a peroxidase gene from poplar and its differential expression in response to stress. Tree Physiol. 2006, 26: 1405-1412.
CAS
PubMed
Google Scholar
Chittoor JM, Leach JE, White FF: Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact. 1997, 10: 861-871. 10.1094/MPMI.1997.10.7.861.
CAS
PubMed
Google Scholar
Choi HW, YJ K, Lee SC, Hong JK, Hwang BK: Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol. 2007, 145: 890-904. 10.1104/pp.107.103325.
CAS
PubMed Central
PubMed
Google Scholar
Delannoy E, Jalloul A, Assigbetse K, Marmey P, Geiger JP, Lherminier J, Daniel JF, Martinez C, Nicole M: Activity of class III peroxidases in the defense of cotton to bacterial blight. Mol Plant-Microbe Interact. 2003, 16: 1030-1038. 10.1094/MPMI.2003.16.11.1030.
CAS
PubMed
Google Scholar
Kim Y-H, Yang K-S, Kim CY, Ryu S-H, Song W-K, Kwon S-Y, Lee H-S, Bang J-W, Kwak S-S: Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress. J Biochem Mol Biol. 2007, 41: 259-265.
Google Scholar
Hilaire E, A S, Young SA, Willard LH, McGee JD, Sweat T, Chittoor JM, Guikema JA, Leach JE: Vascular defense responses in rice: Peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant-Microbe Interact. 2001, 14: 1411-1419. 10.1094/MPMI.2001.14.12.1411.
CAS
PubMed
Google Scholar
Reimers PJ, Guo A, Leach JK: Increased activity of a cationic peroxidase associated with an incompatible interaction between Xanthomonas oryzae pv oryzae and Rice (Oryza sativa). Plant Physiol. 1992, 99: 1044-1050. 10.1104/pp.99.3.1044.
CAS
PubMed Central
PubMed
Google Scholar
Young SA, Cuo A, Cuikema JA, White FF, Leach JE: Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv oryzae. Plant Physiol. 1995, 107: 1333-1341. 10.1104/pp.107.4.1333.
CAS
PubMed Central
PubMed
Google Scholar
Christensen JH, Bauw G, Welinder KG, Van Montagu M, Boerjan W: Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol. 1998, 118: 125-135. 10.1104/pp.118.1.125.
CAS
PubMed Central
PubMed
Google Scholar
Christensen JH, Overney S, Rohde A, Diaz WA, Bauw G, Simon P, Van Montagu M, Boerjan W: The syringaldazine-oxidizing peroxidase PXP 3-4 from poplar xylem: cDNA isolation, characterization and expression. Plant Mol Biol. 2001, 47: 581-593. 10.1023/A:1012271729285.
CAS
PubMed
Google Scholar
Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi M: Down regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J Plant Res. 2003, 116: 175-182. 10.1007/s10265-003-0087-5.
CAS
PubMed
Google Scholar
Osakabe K, Koyama H, Kawai S, Katayama Y, Morohoshi N: Molecular cloning and the nucleotide sequences of two novel cDNAs that encode anionic peroxidases of Populus kitakamiensis. Plant Sci. 1994, 103: 167-175. 10.1016/0168-9452(94)90205-4.
CAS
Google Scholar
Osakabe K, Koyama H, Kawai S, Katayama Y, Morohoshi N: Molecular cloning of two tandemly arranged peroxidase genes from Populus kitakamiensis and their differential regulation in the stem. Plant Mol Biol. 1995, 28: 677-689. 10.1007/BF00021193.
CAS
PubMed
Google Scholar
Sasaki S, Baba K, Nishida T, Tsutsumi Y, Kondo R: The cationic cell-wall-peroxidase having oxidation ability for polymeric substrate participates in the late stage of lignification of Populus alba L. Plant Mol Biol. 2006, 62: 797-807. 10.1007/s11103-006-9057-3.
CAS
PubMed
Google Scholar
Sasaki S, Nishida T, Tsutsumi Y, Kondo R: Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in b-O-4 linkage. FEBS Lett. 2004, 562: 197-201. 10.1016/S0014-5793(04)00224-8.
CAS
PubMed
Google Scholar
Sasaki S, Shimizu M, Wariishi H, Tsutsumi Y, Kondo R: Transcriptional and translational analyses of poplar anionic peroxidase isoenzymes. J Wood Sci. 2007, 53: 427-435. 10.1007/s10086-007-0888-6.
CAS
Google Scholar
Takeuchi M, Takabe K, Minoru Fujita M: Immunolocalization of an anionic peroxidase in differentiating poplar xylem. J Wood Sci. 2005, 51: 317-322. 10.1007/s10086-004-0662-y.
CAS
Google Scholar
Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang X, Sabatino A, Plourde GL: Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol. 1999, 121: 135-145. 10.1104/pp.121.1.135.
CAS
PubMed Central
PubMed
Google Scholar
Czaninski Y, Sachot RM, Catesson AM: Cytochemical localization of hydrogen peroxide in lignifying cell walls. Ann Bot. 1993, 72: 547-550. 10.1006/anbo.1993.1143.
CAS
Google Scholar
Ros Barcelo A: Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants. Ann Bot. 1998, 82: 97-103. 10.1006/anbo.1998.0655.
Google Scholar
Ros Barcelo A: Xylem parenchyma cells deliver the H2O2 necessary for lignification in differentiating xylem vessels. Planta. 2005, 220: 747-756. 10.1007/s00425-004-1394-3.
CAS
PubMed
Google Scholar
Ros Barcelo A, Gomez-Ros LV, Ferrer MA, Hernandez JA: The apoplastic antioxidant enzymatic system in the wood-forming tissues of trees. Trees. 2006, 20: 145-156. 10.1007/s00468-005-0020-8.
CAS
Google Scholar
Bolwell GP, Wojtaszek P: Mechanisms for the generation of reactive oxygen species in plant defence - a broad perspective. Physiol Mol Plant Pathol. 1997, 51: 347-366. 10.1006/pmpp.1997.0129.
CAS
Google Scholar
Kotchoni S, Gachomo EW: The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci. 2006, 31: 389-404. 10.1007/BF02704112.
CAS
PubMed
Google Scholar
Levine A, Tenhaken R, Dixon R, Lamb C: H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994, 79: 583-593. 10.1016/0092-8674(94)90544-4.
CAS
PubMed
Google Scholar
Mellersh DG, Foulds IV, Higgins VJ, CM H: H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J. 2002, 29: 257-268. 10.1046/j.0960-7412.2001.01215.x.
CAS
PubMed
Google Scholar
Vanacker H, Harbinson J, Ruisch J, Carver TLW, Foyer CH: Antioxidant defences of the apoplast. Protoplasma. 1998, 205: 129-140. 10.1007/BF01279303.
CAS
Google Scholar
Mittler R: Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7: 405-410. 10.1016/S1360-1385(02)02312-9.
CAS
PubMed
Google Scholar
Moller IM, Jensen PE, Hansson A: Oxidative modification to cellular components in plants. Annu Rev Plant Biol. 2007, 58: 459-481. 10.1146/annurev.arplant.58.032806.103946.
PubMed
Google Scholar
Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH: Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol. 2005, 139: 1291-1303. 10.1104/pp.105.067686.
CAS
PubMed Central
PubMed
Google Scholar
Montricharda F, Alkhalfiouib F, Yano F, Vensel WH, Hurkman WJ, Buchanan BB: Thioredoxin targets in plants: The first 30 years. J Proteomics. 2009, 72: 452-474. 10.1016/j.jprot.2008.12.002.
Google Scholar
Ishikawa T, Shigeoka S: Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosysnthesizing organisms. Biosci Biotechnol Biochem. 2008, 72: 1143-1154. 10.1271/bbb.80062.
CAS
PubMed
Google Scholar
Pignocchi C, Foyer CH: Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Opin Plant Biol. 2003, 6: 379-389. 10.1016/S1369-5266(03)00069-4.
CAS
PubMed
Google Scholar
Plomion C, Lalanne C, Claverol S, Meddour H, Kohler A, Bogeat-Triboulot M-B, Barre A, Le Provost G, Dumazet H, Jacob D, et al: Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics. 2006, 6: 6509-6527. 10.1002/pmic.200600362.
CAS
PubMed
Google Scholar
Srivastava V, Schinkel H, Witzell J, Hertzberg M, Torp M, Srivastava MK, Karpinska B, Melzer M, Wingsle G: Downregulation of high-isoelectric-point extracellular superoxide dismutase mediates alterations in the metabolism of reactive oxygen species and developmental disturbances in hybrid aspen. Plant J. 2006, 49: 135-148. 10.1111/j.1365-313X.2006.02943.x.
Google Scholar
Thornalley PJ: The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 1990, 269: 1-11.
CAS
PubMed Central
PubMed
Google Scholar
Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK: Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophysical Res Com. 2005, 337: 61-67. 10.1016/j.bbrc.2005.08.263.
CAS
Google Scholar
Edwards R, Dixon DP, Walbot V: Plant glutathione S-transferases: enzymes with multiple functions in sickness and health. Trends Plant Sci. 2000, 5: 193-198. 10.1016/S1360-1385(00)01601-0.
CAS
PubMed
Google Scholar
Jiang L, Yang H: Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Saf. 2009, 72: 1687-1693. 10.1016/j.ecoenv.2009.04.025.
CAS
PubMed
Google Scholar
Yin XL, Jiang L, Song NH, Yang H: Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem. 2008, 56: 4825-4831. 10.1021/jf800795v.
CAS
PubMed
Google Scholar
Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000, 290: 2110-2113. 10.1126/science.290.5499.2110.
CAS
PubMed
Google Scholar
Kehr J, Rep M: Protein extraction from xylem and phloem sap. Plant Proteomics Methods and Protocols. Edited by: Thiellement H, Zivy M, Damerval C, Méchin V. 2007, Totowa, New Jersey: Humana Press, 355: 27-35.
Google Scholar
Hurkman WJ, Tanaka CK: Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 1986, 81: 802-806. 10.1104/pp.81.3.802.
CAS
PubMed Central
PubMed
Google Scholar
Pechanova O, Stone WD, Monroe W, Nebeker TE, Klepzig KD, Yuceer C: Global and comparative protein profiles of the pronotum of the southern pine beetle, Dendroctonus frontalis. Insect Mol Biol. 2008, 17: 261-277. 10.1111/j.1365-2583.2008.00801.x.
CAS
PubMed
Google Scholar
Nanduri B, Lawrence ML, Vanguri S, Pechan T, Burgess SC: Proteomic analysis using an unfinished bacterial genome: the effect of subminimum inhibitory concentrations of antibiotics on Mannheimia haemolytica virulence factor expression. Proteomics. 2005, 5: 4852-4863. 10.1002/pmic.200500112.
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene Ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25: 25-29. 10.1038/75556.
CAS
PubMed Central
PubMed
Google Scholar
Nielsen H, Engelbrecht J, Brunak S, von Heijne G: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997, 10: 1-6. 10.1093/protein/10.1.1.
CAS
PubMed
Google Scholar
Yuceer C, Land SB, Kubiske ME, Harkess RL: Shoot morphogenesis associated with flowering in Populus deltoides (SALICACEAE). Amer J Bot. 2003, 90: 196-206. 10.3732/ajb.90.2.196.
Google Scholar
Wan CY, Wilkins TA: A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem. 1994, 223: 7-12. 10.1006/abio.1994.1538.
CAS
PubMed
Google Scholar
R Development Core Team: R: A language and environment for statistical computing. 2008, Vienna, Austria: R Foundation for Statistical Computing
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: open software development for computational biology and bioinformatics. Genome Biology. 2004, 5: R80-10.1186/gb-2004-5-10-r80.
PubMed Central
PubMed
Google Scholar
MacDonald JW: Affycoretools: Functions useful for those doing repetitive analyses with Affymetrix GeneChips. R package version 1141. 2005
Google Scholar
Wu Z, Irizarry RA: Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J Comput Biol. 2005, 12: 882-893. 10.1089/cmb.2005.12.882.
CAS
PubMed
Google Scholar
Smyth GK: Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. 2005, New York: Springer, 397-420. full_text.
Google Scholar
Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statist Appl in Gen Mol Biology. 2004, 3 (1): Article 3-
Google Scholar
Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut library for R. Bioinformatics. 2008, 24: 719-720. 10.1093/bioinformatics/btm563.
CAS
PubMed
Google Scholar
Hsu C-Y, Liu Y, Luthe DS, Yuceer C: Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell. 2006, 18: 1846-1861. 10.1105/tpc.106.041038.
CAS
PubMed Central
PubMed
Google Scholar
Larson PR, Isebrands JG: The plastochron index as applied to developmental studies of cottonwood. Can J For Res. 1971, 1: 1-11. 10.1139/x71-001.
Google Scholar
Boyle B, Levée V, Hamel L-P, Nicole M-C, Séguin A: Molecular and histochemical characterization of two distinct poplar Melampsora leaf rust pathosystems. Plant Biology. 2010, 12: 364-376. 10.1111/j.1438-8677.2009.00310.x.
CAS
PubMed
Google Scholar
Rutledge RG, Stewart D: A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR. BMC Biotechnol. 2008, 8: 47-10.1186/1472-6750-8-47.
PubMed Central
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and 2-DDCt method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: research 0034-10.1186/gb-2002-3-7-research0034.
Google Scholar
Destefano-Beltrán L, Knauber D, Huckle L, Suttle JC: Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Mol Biol. 2006, 61: 687-697. 10.1007/s11103-006-0042-7.
PubMed
Google Scholar
Srivastava LM: Plant Growth and Development. Hormones and Environment. 2002, San Diego, CA, USA: Academic Press
Google Scholar
Magneschi L, Perata P: Rice germination and seedling growth in the absence of oxygen. Ann Bot. 2009, 103: 181-196. 10.1093/aob/mcn121.
CAS
PubMed Central
PubMed
Google Scholar
Narsai R, Howell KA, Carroll A, Ivanova A, Millar AH, Whelan J: Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. Plant Physiol. 2009, 151: 306-322. 10.1104/pp.109.142026.
CAS
PubMed Central
PubMed
Google Scholar
Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP: The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant-Microbe Interact. 2007, 20: 816-831. 10.1094/MPMI-20-7-0816.
CAS
PubMed
Google Scholar
Street NR, Skogstrom O, Sjodin A, Tucker J, Rodrıguez-Acosta R, Nilsson P, Jansson S, Taylor G: The genetics and genomics of the drought response in Populus. Plant J. 2006, 48: 321-341. 10.1111/j.1365-313X.2006.02864.x.
CAS
PubMed
Google Scholar