Zhang Q: Strategies for developing Green Super Rice. Proc Natl Acad Sci USA. 2007, 104: 16402-16409. 10.1073/pnas.0708013104.
CAS
PubMed
PubMed Central
Google Scholar
Del-Rosario AR, Briones VP, Vidal AJ, Juliano BO: Composition and endosperm structure of developing and mature rice kernel. Cereal Chem. 1968, 45: 225-235.
Google Scholar
Myers AM, Morell MK, James MG, Ball SG: Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 2000, 122: 989-997. 10.1104/pp.122.4.989.
CAS
PubMed
PubMed Central
Google Scholar
Kang HG, Park S, Matsuoka M, An G: White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J. 2005, 42: 901-911. 10.1111/j.1365-313X.2005.02423.x.
CAS
PubMed
Google Scholar
Yamakawa H, Hirose T, Kuroda M, Yamaguchi T: Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol. 2007, 144: 258-277. 10.1104/pp.107.098665.
CAS
PubMed
PubMed Central
Google Scholar
Dung LV, Mikami I, Amano E, Sano Y: Study on the response of dull endosperm 2-2, du2-2, to two Wx alleles in rice. Breeding Sci. 2000, 50: 215-219.
CAS
Google Scholar
Isshiki M, Nakajima M, Satoh H, Shimamoto K: dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J. 2000, 23: 451-460. 10.1046/j.1365-313x.2000.00803.x.
CAS
PubMed
Google Scholar
Nishi A, Nakamura Y, Tanaka N, Satoh H: Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol. 2001, 127: 459-472. 10.1104/pp.010127.
CAS
PubMed
PubMed Central
Google Scholar
Kawasaki T, Mizuno K, Baba T: Coordinated regulation of the gene participating in starch biosynthesis by the rice floury-2 locus. Plant Physiol. 1996, 110: 459-472.
Google Scholar
Nakamura Y, Kubo AK, Shimamune T, Matsuda T, Harada K, Satoh H: Correlation between activities of starch debranching enzyme and α-polyglucan structure in endosperms of sugary-1 mutants of rice. Plant J. 1997, 12: 143-153. 10.1046/j.1365-313X.1997.12010143.x.
CAS
Google Scholar
Tashiro T, Wardlaw IF: The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust J Agric Res. 1991, 42: 485-496. 10.1071/AR9910485.
Google Scholar
Zakaria S, Matsuda T, Tajima S, Nitta Y: Effect of high temperature at ripening stage on the reserve accumulation in seed in some rice cultivars. Plant Prod Sci. 2002, 5: 160-168. 10.1626/pps.5.160.
Google Scholar
Cheng FM, Hu DW, Ding YS: Dynamic change of chalkiness and observation of grain endosperm structure with scanning electron microscope under controlled temperature condition. Chinese J Rice Sci. 2000, 14: 83-87.
Google Scholar
Shen B: Observation on the starch grain development of early indica rice during chalkiness formation with scanning electronic microscope. Chinese J Rice Sci. 2000, 14: 225-228.
Google Scholar
Yang F, Song H, Cui XY, Gao W: Observation on amyloplast development in endosperm of different chalkiness Japonica rice with scanning electronic microscope. Acta Agronomica Sinica. 2004, 30: 406-408.
Google Scholar
He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y, Zhu LH: Genetic analysis of rice grain quality. Theor Appl Genet. 1999, 98: 502-508. 10.1007/s001220051098.
CAS
Google Scholar
Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang Q: Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet. 2000, 10: 823-829. 10.1007/s001220051549.
Google Scholar
Wan XY, Weng JF, Zhai HQ, Wan JM: Fine mapping of pgwc-8 gene affecting percentage of grains with chalkiness in rice (Oryza sativa. L). Rice Genetics Newsletter. 2004, 21: 54-56.
Google Scholar
Wan XY, Wan JM, Weng JF, Jiang L, Bi JC, Wang CM, Zhai HQ: Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet. 2005, 110: 1334-1346. 10.1007/s00122-005-1976-x.
CAS
PubMed
Google Scholar
Woo MO, Ham TH, Ji HS, Choi MS, Jiang W, Chu SH, Piao R, Chin JH, Kim JA, Park BS, Seo HS, Jwa NS, McCouch S, Koh HJ: Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J. 2008, 54: 190-204. 10.1111/j.1365-313X.2008.03405.x.
CAS
PubMed
PubMed Central
Google Scholar
Tsunematsu H, Yoshimura A, Harushima Y, Nagamura Y, Kurata N, Yano M, Sasaki T, Iwata N: RFLP framework map using recombinant inbred lines in rice. Breeding Sci. 1996, 46: 279-284.
Google Scholar
Han XZ, Hamaker BR: Amylopectin fine structure and rice starch paste breakdown. J Cereal Sci. 2001, 34: 279-284. 10.1006/jcrs.2001.0374.
CAS
Google Scholar
Boehlein SK, Shaw JR, Stewart JD, Hannah LC: Heat stability and allosteric properties of the maize endosperm ADP-glucose pyrophosphorylase are intimately intertwined. Plant Physiol. 2008, 146: 289-299. 10.1104/pp.107.109942.
CAS
PubMed
PubMed Central
Google Scholar
Saha BC: Hemicellulose bioconversion. J Ind Microbiol Biotechnol. 2003, 30: 279-291. 10.1007/s10295-003-0049-x.
CAS
PubMed
Google Scholar
Dixon DP, Lapthorn A, Edwards R: Plant glutathione transferases. Genome Biol. 2002, 3: REVIEWS3004-10.1186/gb-2002-3-3-reviews3004.
PubMed
PubMed Central
Google Scholar
Vieira Dos Santos C, Rey P: Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 2006, 11: 329-334. 10.1016/j.tplants.2006.05.005.
CAS
PubMed
Google Scholar
Zen DL, Qian Q, Ruan LQ, Teng S, Y. K, Fujimoto H, Zhu LH: QTL analysis of chalkiness size in three dimensions. Chinese J Rice Sci. 2002, 16: 11-14.
Google Scholar
Li ZF, Wan JM, Xia JF, Zhai HQ: Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Yi Chuan Xue Bao. 2003, 30: 251-259.
PubMed
Google Scholar
Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR: Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet. 2003, 107: 1433-1441. 10.1007/s00122-003-1376-z.
CAS
PubMed
Google Scholar
Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch SR: QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome. 2004, 47: 697-704. 10.1139/g04-029.
CAS
PubMed
Google Scholar
Shouichi Y: Effects of air temperature and light on grain filling of an indica and a japonica under controlled environmental conditions. Soil sci plant Nut. 1987, 23: 93-104.
Google Scholar
Guo YP, Mu P, Liu JF, Lu YX, Li ZC: Comparative Studies on Quality Characters of Rice under Water-and Dry-cultivation Conditions. Acta Agronomica Sinica. 2005, 17: 1443-1448.
Google Scholar
Cai Y, Wang W, Zhu Z, Zhang Z, Langm Y, Zhu Q: Effects of water stress during grain-filling period on rice grain yield and its quality under different nitrogen levels. Chinese Journal of Applied Ecology. 2006, 17: 1201-1206.
CAS
PubMed
Google Scholar
Patindol J, Wang YJ: Fine structures and physicochemical properties of starches from chalky and translucent rice kernels. J Agric Food Chem. 2003, 51: 2777-2784. 10.1021/jf026101t.
CAS
PubMed
Google Scholar
Zhong LJ, Cheng FM: Varietal differences in amylose accumulation and activities of major enzymes associated with starch synthesis during grain filling in rice. Acta Agronomica Sinica. 2003, 29: 452-456.
Google Scholar
Yang JC, Peng SB, Gu SL, Visperas RM, Zhu QS: Changes in activities of three enzymes associated with starch synthesis in rice grains during grain filling. Acta Agronomica Sinica. 2007, 27: 157-164.
Google Scholar
Mittler R: Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7: 405-410. 10.1016/S1360-1385(02)02312-9.
CAS
PubMed
Google Scholar
Bienert GP, Schjoerring JK, Jahn TP: Membrane transport of hydrogen peroxide. Biochim Biophys Acta. 2006, 1758: 994-1003. 10.1016/j.bbamem.2006.02.015.
CAS
PubMed
Google Scholar
Wan XY, Liu JY: Comparative proteomic analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Molecular and Cellular Proteomics. 2008, 7: 1469-1488. 10.1074/mcp.M700488-MCP200.
CAS
PubMed
PubMed Central
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F: Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9: 490-498. 10.1016/j.tplants.2004.08.009.
CAS
PubMed
Google Scholar
Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H: Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell. 2005, 17: 804-821. 10.1105/tpc.104.030205.
CAS
PubMed
PubMed Central
Google Scholar
Apel K, Hirt H: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004, 55: 373-399. 10.1146/annurev.arplant.55.031903.141701.
CAS
PubMed
Google Scholar
Espartero J, Sanchez-Aguayo I, Pardo JM: Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol. 1995, 29: 1223-1233. 10.1007/BF00020464.
CAS
PubMed
Google Scholar
Maccarrone M, Melinol G, Finazzi-Agro A: Lipoxygenases and their involvement in programmed cell death. Cell Death and Differentiation. 2001, 8: 776-784. 10.1038/sj.cdd.4400908.
CAS
PubMed
Google Scholar
Lin SK, Chang MC, Tsai YG, Lur HS: Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics. 2005, 5: 2140-2156. 10.1002/pmic.200401105.
CAS
PubMed
Google Scholar
Yang J, Zhang J, Wang Z, Zhu Q: Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot. 2001, 52: 2169-2179.
CAS
PubMed
Google Scholar
Yang J, Zhang J, Wang Z, Zhu Q, Liu L: Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta. 2002, 215: 645-652. 10.1007/s00425-002-0789-2.
CAS
PubMed
Google Scholar
Schaeffer GW, Sharpe FT: Increased Lysine and Seed Storage Protein in Rice Plants Recovered from Calli Selected with Inhibitory Levels of Lysine plus Threonine and S-(2-Aminoethyl)cysteine. Plant Physiol. 1987, 84: 509-515. 10.1104/pp.84.2.509.
CAS
PubMed
PubMed Central
Google Scholar
Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A: Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant. 2008, 134: 508-521. 10.1111/j.1399-3054.2008.01159.x.
CAS
PubMed
Google Scholar
Gorantla M, Babu PR, Lachagari VB, Reddy AM, Wusirika R, Bennetzen JL, Reddy AR: Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot. 2007, 58: 253-265. 10.1093/jxb/erl213.
CAS
PubMed
Google Scholar
Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun SJ, de los Reyes BG: An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics. 2007, 8: 175-10.1186/1471-2164-8-175.
PubMed
PubMed Central
Google Scholar
Cho SK, Jeung JU, Kang KH, Shim KS, Jung KW, You MK, Ok SH, Chung YS, Hwang HG, Choi HC, Moon HP, Shin JS: Identification of genes induced in wound-treated wild rice (Oryza minuta). Mol Cells. 2004, 17: 230-236.
CAS
PubMed
Google Scholar
Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ: Gene expression profiles during the initial phase of salt stress in rice. Plant Cell. 2001, 13: 889-905. 10.1105/tpc.13.4.889.
CAS
PubMed
PubMed Central
Google Scholar
Rakwal R, Kimura S, Shibato J, Nojima K, Kim YK, Nahm BH, Jwa NS, Endo S, Tanaka K, Iwahashi H: Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and time-dependent gene expression changes. Mol Cells. 2008, 25: 272-278.
CAS
PubMed
Google Scholar
Kubo T, Nakamura K, Yoshimura A: Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet Newsl. 1999, 16: 104-106.
Google Scholar
Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y: Function and characterization of starch synthase I using mutants in rice. Plant Physiol. 2006, 140: 1070-1084. 10.1104/pp.105.071845.
CAS
PubMed
PubMed Central
Google Scholar
Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park JH, Jane JL, Miyao A, Hirochika H, Nakamura Y: Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol. 2007, 144: 2009-2023. 10.1104/pp.107.102533.
CAS
PubMed
PubMed Central
Google Scholar
Brabender M: The new MICRO-VISCO-AMYLO-GRAPH: comparison of some results with those of the Viscograph. Poster presentation at 1998 American Association of Cereal Chemists Annual Meeting Minneapoils. 1998
Google Scholar
Yamanouchi H, Nakamura Y: Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol. 1992, 33: 985-991.
CAS
Google Scholar
Umemoto T, Nakamura Y, Ishikura N: Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry. 1995, 40: 1613-1616. 10.1016/0031-9422(95)00380-P.
CAS
Google Scholar
Nakamura Y, Yuki K, Park SY, Ohya T: Carbohydrate metabolism in the developing endosperm of rice grain. Plant Cell Physiol. 1989, 30: 833-839.
CAS
Google Scholar
Nelson N: A photometric adaptation of Somogyi method for the determination of glucose. J Biol Chem. 1944, 153: 375-380.
CAS
Google Scholar
Somogyi M: Notes on sugar determination. J Biol Chem. 1952, 195: 19-23.
CAS
Google Scholar
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001, 98: 5116-5121. 10.1073/pnas.091062498.
CAS
PubMed
PubMed Central
Google Scholar