Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG: Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci. 2004, 101 (27): 9971-9975. 10.1073/pnas.0403720101.
Article
CAS
PubMed Central
PubMed
Google Scholar
Grover A, Chandramouli A, Agarwal S, Katiyar-Agarwal S, Agarwal M, Sahi C: Transgenic rice for tolerance against abiotic stresses. Rice Improvement in the Genomic Era. Edited by: Dutta SK. 2009, Hawarth Press USA, 237-267.
Google Scholar
Singh A, Grover A: Genetic engineering for heat tolerance in plants. Physiol Mol Biol Plants. 2008, 14: 155-166. 10.1007/s12298-008-0014-2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N: Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. Journal of Experimental Botany. 2009, 60 (13): 3891-3908. 10.1093/jxb/erp234.
Article
CAS
PubMed Central
PubMed
Google Scholar
IRGSP: The map-based sequence of the rice genome. Nature. 2005, 436 (7052): 793-800. 10.1038/nature03895.
Article
Google Scholar
Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science. 2002, 296 (5565): 79-92. 10.1126/science.1068037.
Article
CAS
PubMed
Google Scholar
Meier S, Gehring C, MacPherson C, Kaur M, Maqungo M, Reuben S, Muyanga S, Shih M-D, Wei F, Wanchana S: The promoter signatures in rice LEA genes can be used to build a co-expressing LEA gene network. Rice. 2008, 1: 177-187. 10.1007/s12284-008-9017-4.
Article
Google Scholar
Hu W, Hu G, Han B: Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci. 2009, 176: 583-590. 10.1016/j.plantsci.2009.01.016.
Article
CAS
PubMed
Google Scholar
Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A: Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem. 2009, 47 (9): 785-795. 10.1016/j.plaphy.2009.05.003.
Article
CAS
PubMed
Google Scholar
Ouyang Y, Chen J, Xie W, Wang L, Zhang Q: Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Molecular Biology. 2009, 70 (3): 341-57. 10.1007/s11103-009-9477-y.
Article
CAS
PubMed
Google Scholar
Sarkar NK, Kim YK, Grover A: Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics. 2009, 10 (1): 393-10.1186/1471-2164-10-393.
Article
PubMed Central
PubMed
Google Scholar
Singla SL, Grover A: Antibodies raised against yeast HSP 104 cross-react with a heat- and abscisic acid-regulated polypeptide in rice. Plant Molecular Biology. 1993, 22 (6): 1177-1180. 10.1007/BF00028989.
Article
CAS
PubMed
Google Scholar
Pareek A, Singla SL, Grover A: Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Molecular Biology. 1995, 29 (2): 293-301. 10.1007/BF00043653.
Article
CAS
PubMed
Google Scholar
Singla SL, Pareek A, Kush AK, Grover A: Distribution patterns of 104 kDa stress-associated protein in rice. Plant Molecular Biology. 1998, 37 (6): 911-919. 10.1023/A:1006099715375.
Article
CAS
PubMed
Google Scholar
Batra G, Chauhan VS, Singh A, Sarkar NK, Grover A: Complexity of rice Hsp100 gene family: lessons from rice genome sequence data. Journal of Biosciences. 2007, 32 (3): 611-619. 10.1007/s12038-007-0060-x.
Article
CAS
PubMed
Google Scholar
Katiyar-Agarwal S, Agarwal M, Gallie DR, Grover A: Search for cellular functions of plant Hsp100/Clp family proteins. Crit Rev Plant Sci. 2001, 20: 277-295. 10.1016/S0735-2689(01)80043-5.
Article
CAS
Google Scholar
Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E: The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J. 2007, 49 (1): 115-127. 10.1111/j.1365-313X.2006.02940.x.
Article
CAS
PubMed
Google Scholar
Hwang BJ, Park WJ, Chung CH, Goldberg AL: Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La. Proc Natl Acad Sci. 1987, 84 (16): 5550-5554. 10.1073/pnas.84.16.5550.
Article
CAS
PubMed Central
PubMed
Google Scholar
Katayama-Fujimura Y, Gottesman S, Maurizi MR: A multiple-component, ATP-dependent protease from Escherichia coli. The Journal of Biological Chemistry. 1987, 262 (10): 4477-4485.
CAS
PubMed
Google Scholar
Laskowska E, Kuczynska-Wisnik D, Skorko-Glonek J, Taylor A: Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro. Molecular Microbiology. 1996, 22 (3): 555-571. 10.1046/j.1365-2958.1996.1231493.x.
Article
CAS
PubMed
Google Scholar
Frickey T, Lupas AN: Phylogenetic analysis of AAA proteins. Journal of Structural Biology. 2004, 146 (1-2): 2-10. 10.1016/j.jsb.2003.11.020.
Article
CAS
PubMed
Google Scholar
Neuwald AF, Aravind L, Spouge JL, Koonin EV: AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Research. 1999, 9 (1): 27-43.
CAS
PubMed
Google Scholar
Schirmer EC, Glover JR, Singer MA, Lindquist S: HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci. 1996, 21 (8): 289-296.
Article
CAS
PubMed
Google Scholar
Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Zheng B, Vallon O, Rodermel SR, Shinozaki K: Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol. 2001, 125 (4): 1912-1918. 10.1104/pp.125.4.1912.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wickner S, Gottesman S, Skowyra D, Hoskins J, McKenney K, Maurizi MR: A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci. 1994, 91 (25): 12218-12222. 10.1073/pnas.91.25.12218.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wawrzynow A, Wojtkowiak D, Marszalek J, Banecki B, Jonsen M, Graves B, Georgopoulos C, Zylicz M: The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone. The EMBO Journal. 1995, 14 (9): 1867-1877.
CAS
PubMed Central
PubMed
Google Scholar
Kessel M, Maurizi MR, Kim B, Kocsis E, Trus BL, Singh SK, Steven AC: Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. Journal of Molecular Biology. 1995, 250 (5): 587-594. 10.1006/jmbi.1995.0400.
Article
CAS
PubMed
Google Scholar
Rohrwild M, Pfeifer G, Santarius U, Muller SA, Huang HC, Engel A, Baumeister W, Goldberg AL: The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nature Structural Biology. 1997, 4 (2): 133-139. 10.1038/nsb0297-133.
Article
CAS
PubMed
Google Scholar
Porankiewicz J, Wang J, Clarke AK: New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Molecular Microbiology. 1999, 32 (3): 449-458. 10.1046/j.1365-2958.1999.01357.x.
Article
CAS
PubMed
Google Scholar
Woo KM, Kim KI, Goldberg AL, Ha DB, Chung CH: The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. The Journal of Biological Chemistry. 1992, 267 (28): 20429-20434.
CAS
PubMed
Google Scholar
Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B: Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. The EMBO Journal. 1999, 18 (24): 6934-6949. 10.1093/emboj/18.24.6934.
Article
CAS
PubMed Central
PubMed
Google Scholar
Motohashi K, Watanabe Y, Yohda M, Yoshida M: Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci. 1999, 96 (13): 7184-7189. 10.1073/pnas.96.13.7184.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zolkiewski M: ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. The Journal of Biological Chemistry. 1999, 274 (40): 28083-28086. 10.1074/jbc.274.40.28083.
Article
CAS
PubMed
Google Scholar
Doyle SM, Hoskins JR, Wickner S: Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci. 2007, 104 (27): 11138-11144. 10.1073/pnas.0703980104.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hong SW, Vierling E: Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci. 2000, 97 (8): 4392-4397. 10.1073/pnas.97.8.4392.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hong SW, Vierling E: Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J. 2001, 27 (1): 25-35. 10.1046/j.1365-313x.2001.01066.x.
Article
CAS
PubMed
Google Scholar
Nieto-Sotelo J, Martinez LM, Ponce G, Cassab GI, Alagon A, Meeley RB, Ribaut JM, Yang R: Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth. Plant Cell. 2002, 14 (7): 1621-1633. 10.1105/tpc.010487.
Article
CAS
PubMed Central
PubMed
Google Scholar
Queitsch C, Hong SW, Vierling E, Lindquist S: Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 2000, 12 (4): 479-492. 10.1105/tpc.12.4.479.
Article
CAS
PubMed Central
PubMed
Google Scholar
Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie DR, Sharma VM, Ganesan K, Grover A: Molecular characterization of rice hsp101: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types. Plant Molecular Biology. 2003, 51 (4): 543-553. 10.1023/A:1022324920316.
Article
CAS
PubMed
Google Scholar
Katiyar-Agarwal S, Agarwal M, Grover A: Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Molecular Biology. 2003, 51 (5): 677-686. 10.1023/A:1022561926676.
Article
CAS
PubMed
Google Scholar
Keeler SJ, Boettger CM, Haynes JG, Kuches KA, Johnson MM, Thureen DL, Keeler CL, Kitto SL: Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiol. 2000, 123 (3): 1121-1132. 10.1104/pp.123.3.1121.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang JY, Sun Y, Sun AQ, Yi SY, Qin J, Li MH, Liu J: The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Molecular Biology. 2006, 62 (3): 385-395. 10.1007/s11103-006-9027-9.
Article
CAS
PubMed
Google Scholar
Moore T, Keegstra K: The involvement of chloroplast HSP100/ClpB in the acquired thermotolerance in tomato. Plant Molecular Biology. 1993, 21 (3): 525-537. 10.1007/BF00028809.
Article
CAS
PubMed
Google Scholar
Nakabayashi K, Ito M, Kiyosue T, Shinozaki K, Watanabe A: Identification of clp genes expressed in senescing Arabidopsis leaves. Plant & Cell Physiology. 1999, 40 (5): 504-514.
Article
CAS
Google Scholar
Shanklin J, DeWitt ND, Flanagan JM: The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Escherichia coli. 1995, 7 (10): 1713-1722.
CAS
Google Scholar
Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK: Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. Arabidopsis. 2002, 114 (1): 92-101.
CAS
Google Scholar
Kirstein J, Schlothauer T, Dougan DA, Lilie H, Tischendorf G, Mogk A, Bukau B, Turgay K: Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. The EMBO Journal. 2006, 25 (7): 1481-1491. 10.1038/sj.emboj.7601042.
Article
CAS
PubMed Central
PubMed
Google Scholar
Desimone M, Weib-Wichart C, Wagner E, Altenfeld U, Johanningnener U: Immunological studies on the Clp-protease in chloroplasts: evidence for the formation of ClpC/P complex. Bot Acta. 1997, 110: 234-239.
Article
CAS
Google Scholar
Sokolenko A, Lerbs-Mache S, Altschmied L, Herrmann RG: Clp protease complexes and their diversity in chloroplasts. Planta. 1998, 207 (2): 286-295. 10.1007/s004250050485.
Article
CAS
PubMed
Google Scholar
Halperin T, Zheng B, Itzhaki H, Clarke AK, Adam Z: Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease. Plant Molecular Biology. 2001, 45 (4): 461-468. 10.1023/A:1010677220323.
Article
CAS
PubMed
Google Scholar
Sjogren LL, MacDonald TM, Sutinen S, Clarke AK: Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol. 2004, 136 (4): 4114-4126. 10.1104/pp.104.053835.
Article
PubMed Central
PubMed
Google Scholar
Andersson FI, Blakytny R, Kirstein J, Turgay K, Bukau B, Mogk A, Clarke AK: Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity. The Journal of Biological Chemistry. 2006, 281 (9): 5468-5475. 10.1074/jbc.M509661200.
Article
CAS
PubMed
Google Scholar
Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K: Characterization of cDNA for a dehydration-inducible gene that encodes a CLP A, B-like protein in Arabidopsis thaliana. Biochemical and Biophysical Research Communications. 1993, 196 (3): 1214-1220. 10.1006/bbrc.1993.2381.
Article
CAS
PubMed
Google Scholar
Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K: A nuclear gene, erd1, encoding a chloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J. 1997, 12 (4): 851-861. 10.1046/j.1365-313X.1997.12040851.x.
Article
CAS
PubMed
Google Scholar
Lohman K, Gan S, John N, Amasino RM: Molecular analysis of natural leaf senesence in Arabidopsis thaliana. Physiologia Plantarum. 1994, 92: 322-328. 10.1111/j.1399-3054.1994.tb05343.x.
Article
CAS
Google Scholar
Weaver LM, Froehlich JE, Amasino RM: Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis. Arabidopsis. 1999, 119 (4): 1209-1216.
Article
CAS
Google Scholar
Waters ER, Aevermann BD, Sanders-Reed Z: Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones. 2008, 13 (2): 127-142. 10.1007/s12192-008-0023-7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008, 9: 40-10.1186/1471-2105-9-40.
Article
PubMed Central
PubMed
Google Scholar
Kim YI, Levchenko I, Fraczkowska K, Woodruff RV, Sauer RT, Baker TA: Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nature Structural Biology. 2001, 8 (3): 230-233. 10.1038/84967.
Article
CAS
PubMed
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136 (1): 2621-2632. 10.1104/pp.104.046367.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pelzmann A, Ferner M, Gnida M, Meyer-Klaucke W, Maisel T, Meyer O: The CoxD protein of Oligotropha carboxidovorans is a predicted AAA+ ATPase chaperone involved in the biogenesis of the CO dehydrogenase [CuSMoO2] cluster. Oligotropha carboxidovorans. 2009, 284 (14): 9578-9586.
CAS
Google Scholar
Hicks-Berger C, Sokolchik I, Kim C, Morre DJ: A plasma membrane-associated AAA-ATPase from Glycine max. BioFactors. 2006, 28 (2): 135-149. 10.1002/biof.5520280207.
Article
PubMed
Google Scholar
Vigh L, Nakamoto H, Landry J, Gomez-Munoz A, Harwood JL, Horvath I: Membrane regulation of the stress response from prokaryotic models to mammalian cells. Annals of the New York Academy of Sciences. 2007, 1113: 40-51. 10.1196/annals.1391.027.
Article
CAS
PubMed
Google Scholar
Weibezahn J, Bukau B, Mogk A: Unscrambling an egg: protein disaggregation by AAA+ proteins. Microbial Cell Factories. 2004, 3: 1-10.1186/1475-2859-3-1.
Article
PubMed Central
PubMed
Google Scholar
Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X: Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. Journal of Plant Physiology. 2009, 166 (8): 851-861. 10.1016/j.jplph.2008.11.007.
Article
CAS
PubMed
Google Scholar
Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K: Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports. 2009, 28 (1): 21-30. 10.1007/s00299-008-0614-x.
Article
CAS
PubMed
Google Scholar
Yazaki J, Kishimoto N, Nagata Y, Ishikawa M, Fujii F, Hashimoto A, Shimbo K, Shimatani Z, Kojima K, Suzuki K: Genomics approach to abscisic acid- and gibberellin-responsive genes in rice. DNA Res. 2003, 10 (6): 249-261. 10.1093/dnares/10.6.249.
Article
CAS
PubMed
Google Scholar
Shen GA, Pang YZ, Lin CF, Wei C, Qian XY, Jiang LZ, Du XL, Li KG, Attia K, Yang JS: Cloning and characterization of a novel Hsp100/Clp gene (osClpD) from Oryza sativa. DNA Seq. 2003, 14 (4): 285-293.
Article
CAS
PubMed
Google Scholar
Sanchez Y, Lindquist SL: HSP104 required for induced thermotolerance. Science. 1990, 248 (4959): 1112-1115. 10.1126/science.2188365.
Article
CAS
PubMed
Google Scholar
Lee YR, Nagao RT, Key JL: A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell. 1994, 6 (12): 1889-1897. 10.1105/tpc.6.12.1889.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schmitt M, Neupert W, Langer T: The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. The Journal of Cell Biology. 1996, 134 (6): 1375-1386. 10.1083/jcb.134.6.1375.
Article
CAS
PubMed
Google Scholar
Tessarz P, Mogk A, Bukau B: Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Molecular Microbiology. 2008, 68 (1): 87-97. 10.1111/j.1365-2958.2008.06135.x.
Article
CAS
PubMed
Google Scholar
Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987, 162 (1): 156-159. 10.1016/0003-2697(87)90021-2.
Article
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997, 25 (24): 4876-4882. 10.1093/nar/25.24.4876.
Article
CAS
PubMed Central
PubMed
Google Scholar
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987, 4 (4): 406-425.
CAS
PubMed
Google Scholar
Page R: TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences. 1996, 12: 357-358.
CAS
PubMed
Google Scholar
von Arnim AG, Deng XW, Stacey MG: Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene. 1998, 221 (1): 35-43. 10.1016/S0378-1119(98)00433-8.
Article
CAS
PubMed
Google Scholar
Singh A, Sahi C, Grover A: Chymotrypsin protease inhibitor gene family in rice: Genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes. Gene. 2009, 428 (1-2): 9-19. 10.1016/j.gene.2008.09.028.
Article
CAS
PubMed
Google Scholar
Nigam N, Singh A, Sahi C, Chandramouli A, Grover A: SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response. Mol Genet Genomics. 2008, 279 (4): 371-383. 10.1007/s00438-008-0318-5.
Article
CAS
PubMed
Google Scholar