Harris CC: p53 Tumor suppressor gene: from the basic research laboratory to the clinic-an abridged historical perspective. Carcinogenesis. 1996, 17: 1187-1198. 10.1093/carcin/17.6.1187.
Article
CAS
PubMed
Google Scholar
El-Deiry W: Regulation of p53 downstream genes. Semin Cancer Biol. 1998, 8: 345-357. 10.1006/scbi.1998.0097.
Article
CAS
PubMed
Google Scholar
Bell S, Klein C, Muller L, Hansen S, Buchner J: p53 contains large unstructured regions in its native state. J Mol Biol. 2002, 322: 917-927. 10.1016/S0022-2836(02)00848-3.
Article
CAS
PubMed
Google Scholar
Levine AS, Kelly K: Recruitment of p300:CBP in p53-dependent signal pathways. Cell. 1997, 89: 1175-1184. 10.1016/S0092-8674(00)80304-9.
Article
PubMed
Google Scholar
Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM: Binding and modulation of p53 by p300: CBP coactivators. Nature. 1997, 387: 823-827. 10.1038/42981.
Article
CAS
PubMed
Google Scholar
Thut CJ, Chen JL, Klemm R, Tjian R: p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science. 1994, 267: 100-104. 10.1126/science.7809597.
Article
Google Scholar
Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature. 1997, 387: 296-299. 10.1038/387296a0.
Article
CAS
PubMed
Google Scholar
Kubbutat MH, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature. 1997, 387: 299-303. 10.1038/387299a0.
Article
CAS
PubMed
Google Scholar
Joerger AC, Fersht AR: Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008, 77: 557-82. 10.1146/annurev.biochem.77.060806.091238.
Article
CAS
PubMed
Google Scholar
Danovi D, Meulmeeste E, Pasin D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S, Gasparini P, Gobbi A, Helin K, Pelicci PG, Jochemsen AG, Marine JC: Amplification of mdmx (or mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol. 2004, 24 (13): 5835-5843. 10.1128/MCB.24.13.5835-5843.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Toledo F, Wahl GM: Mdm2 and mdm4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007, 39 (7-8): 1476-1482. 10.1016/j.biocel.2007.03.022.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pazgier M, Liu M, Zou G, Yuan W, Li C, Li C, Li J, Monbo J, Zella D, Tarasov SG, Lu W: Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc Natl Acad Sci U S A. 2009, 106 (12): 4665-70. 10.1073/pnas.0900947106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferreon JC, Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE: Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. PNAS. 2009, 106: 6591-6596. 10.1073/pnas.0811023106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH, Chang J, Sung YC, Choi KY, Han KH: Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem. 2000, 275 (38): 29426-32. 10.1074/jbc.M003107200.
Article
CAS
PubMed
Google Scholar
Li C, Liu M, Monbo J, Zou G, Li C, Yuan W, Zella D, Lu WY, Lu W: Turning a scorpion toxin into an antitumor miniprotein. J Am Chem Soc. 2008, 130 (41): 13546-13548. 10.1021/ja8042036.
Article
CAS
PubMed
Google Scholar
Haizhen Zhong, Heather A: Carlson. Computational studies and peptidomimetic design for the human p53-MDM2 complex. Prot Struct Func Bioinformatics. 2005, 58: 222-234. 10.1002/prot.20275.
Google Scholar
Brown CJ, Srinivasan D, Jun HJ, Coomber D, Verma CS, Lane DP: The electrostatic surface of MDM2 modulates the specificity of its interaction with phosphorylated and unphosphorylated p53 peptides. Cell Cycle. 2008, 7: 608-610.
Article
CAS
PubMed
Google Scholar
Schon O, Friedler A, Bycroft M, Freund SMV, Fersht AR: Molecular mechanism of the interaction between MDM2 and p53. J. Mol. Biol. 2002, 323: 491-501. 10.1016/S0022-2836(02)00852-5.
Article
CAS
PubMed
Google Scholar
Kutchukian PS, Yang JS, Verdine GL, Shakhnovich EI: All-atom model for stabilization of alpha-helical structure in peptides by hydrocarbon staples. J Am Chem Soc,. 2009, 131 (13): 4622-4627. 10.1021/ja805037p.
Article
CAS
Google Scholar
Dastidar SG, Lane DP, Verma CS: Multiple peptide conformations give rise to similar binding affinities: molecular simulations of p53-MDM2. J Am Chem Soc. 2008, 130 (41): 13514-5. 10.1021/ja804289g.
Article
CAS
PubMed
Google Scholar
Zondlo SC, Lee AE, Zondlo NJ: Determinants of Specificity of MDM2 for the Activation Domains of p53 and p65: Proline27 Disrupts the MDM2-binding motif of p53. Biochemistry,. 2006, 45: 11945-11957. 10.1021/bi060309g.
Article
Google Scholar
Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL: Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc. 2007, 129 (9): 2456-2457. 10.1021/ja0693587.
Article
CAS
PubMed
Google Scholar
Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F: p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature,. 1999, 398: 714-718. 10.1038/19539.
Article
CAS
Google Scholar
Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A: p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999, 398: 708-713. 10.1038/19531.
Article
CAS
PubMed
Google Scholar
Barbieri CE, Pietenpol JA: p63 and epithelial biology. Exp. Cell Res. 2006, 312: 695-706. 10.1016/j.yexcr.2005.11.028.
Article
CAS
PubMed
Google Scholar
Koster M.I, Roop D.R: p63 and epithelial appendage development. Differentiation. 2004, 72: 364-370. 10.1111/j.1432-0436.2004.07208002.x.
Article
CAS
PubMed
Google Scholar
Van Bokhoven H, McKeon F: Mutations in the p53 homolog p63: allele-specific developmental syndromes in humans. Trends Mol. Med. 2002, 8: 133-139. 10.1016/S1471-4914(01)02260-2.
Article
CAS
PubMed
Google Scholar
Levrero M, De Laurenzi V, Costanzo A, Sabatini S, Gong J, Wang JYJ, Melino G: The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000, 113: 1661-1670.
CAS
PubMed
Google Scholar
Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D: Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 1997, 90: 809-819. 10.1016/S0092-8674(00)80540-1.
Article
CAS
PubMed
Google Scholar
Yang A, Kaghad M, Wang Y, Gilleett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F: p63, a p53 homologue at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell. 1998, 2: 305-316. 10.1016/S1097-2765(00)80275-0.
Article
CAS
PubMed
Google Scholar
p53 Knowledge base. [http://p53.bii.a-star.edu.sg]
IARC TP53 mutation database. [http://www-p53.iarc.fr/]
Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze Bergkamen H, Maria Lena A, Candi E, Terrinoni A, Catani MV, Oren M, Melino G, Krammer PH, Stremmel W, Muller M: Tap63[alpha] induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J. 2005, 24: 2458-2471. 10.1038/sj.emboj.7600708.
Article
PubMed Central
CAS
PubMed
Google Scholar
Melino G, Lu X, Gasco M, Crook T, Knight RA: Complexities in the functional regulation of p63 and p73: from development to cancer?. Trends in Biological Sciences. 2003, 28: 663-670. 10.1016/j.tibs.2003.10.004.
Article
CAS
Google Scholar
Haupt Y: p53 Regulation: a family affair. Cell Cycle. 2004, 3 (7): 884-5.
Article
CAS
PubMed
Google Scholar
Calabrò V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G: The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem. 2002, 277 (4): 2674-2681. 10.1074/jbc.M107173200.
Article
PubMed
Google Scholar
Ying H, Chang DL, Zheng H, McKeon F, Xiao ZX: DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol Cell Biol. 2005, 25 (14): 6154-6164. 10.1128/MCB.25.14.6154-6164.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Madhumalar A, Lee HJ, Brown CJ, Lane D, Verma C: Design of a novel MDM2 binding peptide based on the p53 family. Cell Cycle. 2009, 8 (17): 2828-36.
Article
PubMed
Google Scholar
Fry D, Vassilev L: Targeting protein–protein interactions for cancer therapy. Journal of Molecular Medicine,. 2005, 83 (12): 955-963. 10.1007/s00109-005-0705-x.
Article
CAS
Google Scholar
Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ: The amber biomolecular simulation programs. J Comput Chem. 2005, 26: 1668-1688. 10.1002/jcc.20290.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shell SM, Ritterson R, Dill KA: A test on peptide stability of amber force fields with implicit solvation. J Phys Chem B,. 2008, 112 (22): 6878-6886. 10.1021/jp800282x.
Article
CAS
Google Scholar
Onufriev A, Bashford D, Case DA: Exporling protein native states and large-scale conformational changes with a modified generalized Born model. Proteins. 2004, 55: 383-394. 10.1002/prot.20033.
Article
CAS
PubMed
Google Scholar
van Gunsteren WF, Berendsen HJC: Algorithms for macromolecular dynamics and constraint dynamics. Molecular Physics,. 1977, 34 (5): 1311-1327. 10.1080/00268977700102571.
Article
CAS
Google Scholar
Jorgensen W, Chandrasekhar J, Madura J: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79: 926-935. 10.1063/1.445869.
Article
CAS
Google Scholar
Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics. Journal of Molecular Graphics. 1996, 14: 33-38. 10.1016/0263-7855(96)00018-5.
Article
CAS
PubMed
Google Scholar
Feig M, Karanicolas J, Brooks CL: Mmtsb tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model,. 2004, 22 (5): 377-395. 10.1016/j.jmgm.2003.12.005.
Article
CAS
Google Scholar
Böttger V, Böttger A, Howard SF, Picksley SM, Chène P, Garcia-Echeverria C, Hochkeppel HK, Lane DP: Identification of novel mdm2 binding peptides by phage display. Oncogene. 1996, 13 (10): 2141-2147.
PubMed
Google Scholar
Espinoza-Fonseca LM: Leucine-rich hydrophobic clusters promote folding of the N-terminus of the intrinsically disordered transactivation domain of p53. FEBS Lett,. 2008, 583: 556-560. 10.1016/j.febslet.2008.12.060.
Article
Google Scholar
Billon N, Terrinoni A, Jolicoeur C, McCarthy A, Richardson WD, Melino G, Raff M: Roles of p53 and p73 during oligodendrocyte development. Development,. 2004, 131 (6): 1211-1220. 10.1242/dev.01035.
Article
CAS
Google Scholar
Cui R, Nguyen TT, Taube JH, Stratton SA, Feuerman MH, Barton MC: Family members p53 and p73 act together in chromatin modification and direct repression of α-fetoprotein. J Biol Chem,. 2005, 280: 39152-39160. 10.1074/jbc.M504655200.
Article
CAS
Google Scholar
Fasan R, Dias RL, Moehle K, Zerbe O, Obrecht D, Mittl PR, Grütter MG, Robinson JA: Structure-activity studies in a family of beta-hairpin protein epitope mimetic inhibitors of the p53-HDM2 protein-protein interaction. Chembiochem. 2006, 7 (3): 515-26. 10.1002/cbic.200500452.
Article
CAS
PubMed
Google Scholar
Secchiero P, Melloni E, Tiribelli M, Gonelli A, Zauli G: Combined treatment of CpG-oligodeoxynucleotide with nutlin-3 induces strong immune stimulation coupled to cytotoxicity in B-chronic lymphocytic leukemic (B-CLL) cells. J Leukoc Biol,. 2008, 83: 434-437. 10.1189/jlb.0707459.
Article
CAS
Google Scholar
Robinson JA: Beta-hairpin peptidomimetics: design, structures and biological activities. Acc Chem Res. 2008, 41 (10): 1278-88. 10.1021/ar700259k.
Article
CAS
PubMed
Google Scholar
Grässlin A, Amoreira C, Baldridge KK, Robinson JA: Thermodynamic and Computational Studies on the Binding of p53-Derived Peptides and Peptidomimetic Inhibitors to HDM2. Chembiochem. 2009, 10 (8): 1360-1368. 10.1002/cbic.200900008.
Article
PubMed
Google Scholar
Ying H, Chang DL, Zheng H, McKeon F, Xiao ZX: DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol Cell Biol. 2005, 25 (14): 6154-64. 10.1128/MCB.25.14.6154-6164.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang XQ, Arooz T, Siu WY, Chiu CHS, Lau A, Yamashita K, Poon RYC: MDM2 and MDMX can interact differently with ARF and members of the p53 family. FEBS Letters,. 2001, 490: 202-208. 10.1016/S0014-5793(01)02124-X.
Article
CAS
Google Scholar
Espinoza-Fonseca LM, Trujillo-Ferrara JG: Transient stability of the helical pattern of region F19-L22 of the N-terminal domain of p53: A molecular dynamics simulation study. Biochem Biophys Res Commun. 2006, 343: 110-116. 10.1016/j.bbrc.2006.02.129.
Article
CAS
PubMed
Google Scholar
Botuyan MV, Momand J, Chem Y: Solution conformation of an essential region of the p53 transactivation domain. Fold Des. 1997, 2: 331-342. 10.1016/S1359-0278(97)00047-3.
Article
CAS
PubMed
Google Scholar
Brown CJ, Srinivasan D, Jun HJ, Coomber D, Verma CS, Lane DP: The electrostatic surface of MDM2 modulates the specificity of its interaction with phosphorylated and unphosphorylated p53 peptides. Cell Cycle. 2008, 7: 608-610.
Article
CAS
PubMed
Google Scholar
Dodson GG, Lane DP, Verma CS: Molecular simulations of protein dynamics: new windows on mechanisms in biology. EMBO reports. 2008, 9: 144-150. 10.1038/sj.embor.7401160.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kruse JP, Gu W: Modes of p53 regulation. Cell,. 2009, 137: 609-622. 10.1016/j.cell.2009.04.050.
Article
CAS
Google Scholar
Burge S, Teufel DP, Townsley FM, Freund SMV, Bycroft M, Fersht AR: Molecular basis of the interactions between the p73 N terminus and p300: Effects on transactivation and modulation by phosphorylation. PNAS. 2009, 106: 3142-3147. 10.1073/pnas.0900383106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee HJ, Srinivasan D, Coomber D, Lane DP, Verma CS: Modulation of the p53-MDM2 interaction by phosphorylation of Thr18: a computational study. Cell Cycle. 2007, 6: 2604-2611.
Article
CAS
PubMed
Google Scholar
Dornan D, Shimizu H, Perkins ND, Hupp TR: DNA-dependent acetylation of p53 by the transcription coactivator p300. J Biol Chem,. 2003, 278 (15): 13431-41. 10.1074/jbc.M211460200.
Article
CAS
Google Scholar
Xu F, Cross TA, Water : Foldase activity in catalyzing polypeptide conformational rearrangements. Proc Natl Acad Sci U S A. 1999, 96 (16): 9057-9061. 10.1073/pnas.96.16.9057.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vayssade M, Haddada H, Faridoni-Laurens L, Tourpin S, Valent A, Benard J, Ahomadegbe J: p73 functionally replaces p53 in adriamycin-treated, p53-deficient breast cancer cells. Int. J. Cancer. 2005, 116: 860-869. 10.1002/ijc.21033.
Article
CAS
PubMed
Google Scholar
Fulco M, Costanzo A, Merlo P, Mangiacasale R, Strano S, Blandino G, Balsano C, Lavia P, Levrero M: p73 is regulated by phosphorylation at the G2/M transition. J Biol Chem. 2003, 278: 49196-49202. 10.1074/jbc.M304921200.
Article
CAS
PubMed
Google Scholar
Little NA, Jochemsen AG: Hdmx and Mdm2 can repress transcription activation by p53 but not by p63. Oncogene. 2001, 20 (33): 4576-80. 10.1038/sj.onc.1204615.
Article
CAS
PubMed
Google Scholar