Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5 (7): 621-628. 10.1038/nmeth.1226.
CAS
PubMed
Google Scholar
Lister R, Gregory BD, Ecker JR: Next is now:new technologies for sequencing of genomes, trancriptomes, and beyond. Curr Opin Plant Biol. 2009, 12: 107-118. 10.1016/j.pbi.2008.11.004.
CAS
PubMed
PubMed Central
Google Scholar
Marguerat S, Bähler J: RNA-seq: from technology to biology. Cell Mol Life Sci. 2010, 67: 569-579. 10.1007/s00018-009-0180-6.
CAS
PubMed
Google Scholar
Wilhelm BT, Landry J-R: RNA-Seq-quantitative measurement of expression through massively parallel RNA-Sequencing. Methods. 2009, 48: 249-257. 10.1016/j.ymeth.2009.03.016.
CAS
PubMed
Google Scholar
Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009, 10: 57-63. 10.1038/nrg2484.
CAS
PubMed
PubMed Central
Google Scholar
Bruno VM, Wang Z, Marjani SL, Euskirchen GM, Martin J, Sherlock G, Snyder M: Comprehensive annotation of the trancriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 2010, 20: 1451-1458. 10.1101/gr.109553.110.
CAS
PubMed
PubMed Central
Google Scholar
Rounsley SD, Last RL: Shotguns and SNPS: how fast and cheap sequencing is revolutionizing plant biology. Plant J. 2010, 61: 922-927. 10.1111/j.1365-313X.2009.04030.x.
CAS
PubMed
Google Scholar
Howard BE, Heber S: Towards reliable isoform quantification using RNA-SEQ data. BMC Bioinformatics. 2010, 11 (Suppl 3): 56-
Google Scholar
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008, 18: 1509-1517. 10.1101/gr.079558.108.
CAS
PubMed
PubMed Central
Google Scholar
Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB: Sampling the Arabidopsis transcriptome with massively parallel pryrosequencing. Plant Physiol. 2007, 144 (1): 32-42. 10.1104/pp.107.096677.
CAS
PubMed
PubMed Central
Google Scholar
Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H, Landherr L, Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE, Soltis PS, Altman N, dePamphilis CW: Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics. 2009, 10: 347-10.1186/1471-2164-10-347.
PubMed
PubMed Central
Google Scholar
Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J, Xu D, May G, Stacey G: An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J. 2010, 10: 1111-
Google Scholar
Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC: RNA-Seq atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biology. 2010, 10: 160-10.1186/1471-2229-10-160.
PubMed
PubMed Central
Google Scholar
Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B: Functional annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res. 2010, 20: 1238-1249. 10.1101/gr.106120.110.
CAS
PubMed
PubMed Central
Google Scholar
Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS: SNP discovery via 454 transcriptome sequencing. Plant J. 2007, 51 (5): 910-918. 10.1111/j.1365-313X.2007.03193.x.
CAS
PubMed
PubMed Central
Google Scholar
Cheung F, Haas BJ, Goldberg SMD, May GD, Xiao Y, Town CD: Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics. 2006, 7: 272-10.1186/1471-2164-7-272.
PubMed
PubMed Central
Google Scholar
Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M: High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics. 2008, 9: 312-10.1186/1471-2164-9-312.
PubMed
PubMed Central
Google Scholar
Bellin D, Ferrarini A, Chimento A, Kaiser O, Levenkova N, Bouffard P, Delledonne M: Combining next-generation pyrosequencing with microarray for large scale expression analysis in non-model species. BMC Genomics. 2009, 10: 555-10.1186/1471-2164-10-555.
PubMed
PubMed Central
Google Scholar
Collins LJ, Biggs PJ, Voelckel C, Joly S: An approach to transcriptome analysis of non-model organisms using short-read sequences. Genome Informatics. 2008, 21: 3-14.
CAS
PubMed
Google Scholar
Wang W, Wang Y, Zhang Q, Qi Y, Guo D: Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics. 2009, 10: 465-10.1186/1471-2164-10-465.
PubMed
PubMed Central
Google Scholar
Trick M, Long Y, Meng J, Bancroft I: Single nucleotide polymorphism (SNP) discovery in the polyploidy Brassica napus using Solexa transcriptome sequencing. Plant Biotech J. 2009, 7: 334-346. 10.1111/j.1467-7652.2008.00396.x.
CAS
Google Scholar
Michaud R, Lehman WF, Rumbaugh MD: World Distribution and Historical Development. Alfalfa and alfalfa improvement - Agronomy Monograph no. 29. Edited by: Hanson AA, Barnes DK, Hill RR Jr. 1988, Madison, WI: ASA-CSSA-SSSA, 25-91.
Google Scholar
National Agricultural Statistics Service: 2009, On-line resource, [http://www.nass.usda.gov]
Samac DA, Jung H-JG, Lamb JFS: Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bioproducts. Alcoholic Fuels. Edited by: Minteer S. 2006, Boca Raton, FL: CRC Press, 79-98.
Google Scholar
Yang SS, Xu WW, Tesfaye M, Lamb JFS, Jung H-JG, VandenBosch KA, Vance CP, Gronwald JW: Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes. BMC Genomics. 2010, 11: 323-
PubMed
PubMed Central
Google Scholar
Rumbaugh MD, Caddel JL, Rowe E: Breeding and Quantitative Genetics. Alfalfa and Alfalfa Improvement. ASA Monograph 29. 1988, Madison, WI: American Society of Agronomy, 777-808.
Google Scholar
Brummer EC, Sledge MK, Bouton JH, Kochert G: Molecular Marker Analyses in Alfalfa and Related Species. DNA-based markers in plants. Edited by: Phillips RL, Vasil IK. 2001, The Netherlands: Kluwer Academic, 169-180.
Google Scholar
Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C: Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. 2003, 3: 9-10.1186/1471-2229-3-9.
PubMed
PubMed Central
Google Scholar
Diwan N, Bhagwat AA, Bauchan GB, Cregan PB: Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome. 1997, 40: 887-895. 10.1139/g97-115.
CAS
PubMed
Google Scholar
Sledge MK, Ray IM, Jiang G: An expressed sequence tag SSR map of tetrapolid alfalfa (Medicago sativa L.). Theor Appl Genet. 2005, 111: 980-992. 10.1007/s00122-005-0038-8.
CAS
PubMed
Google Scholar
Yang SS, Xu WW, Tesfaye M, Lamb JFS, Jung H-JG, Samac DA, Vance CP, Gronwald JW: Single-feature polymorphism discovery in the transcriptome of tetraploid alfalfa. Plant Genome. 2009, 2: 224-232. 10.3835/plantgenome2009.03.0014.
CAS
Google Scholar
Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18: 821-829. 10.1101/gr.074492.107.
CAS
PubMed
PubMed Central
Google Scholar
Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, Rokas A: Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol. 2009, 26 (12): 2731-2744. 10.1093/molbev/msp188.
CAS
PubMed
Google Scholar
Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA: de novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics. 2010, 11: 681-10.1186/1471-2164-11-681.
CAS
PubMed
PubMed Central
Google Scholar
Garg R, Patel RK, Tyagi AK, Jain M: de novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Research. 2011
Google Scholar
Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao Y, Hirst M, Schein JE, et al: de novo transcriptome assembly with ABySS. Bioinformatics. 2009, 25 (21): 2872-2877. 10.1093/bioinformatics/btp367.
CAS
PubMed
Google Scholar
Surget-Groba Y, Montoya-Burgos JI: Optimization of de novo transcriptome assembly from next-generation sequencing data. Genome Research. 2010, 20: 1432-1440. 10.1101/gr.103846.109.
CAS
PubMed
PubMed Central
Google Scholar
Oases: (Jan 31st, website last accessed), [http://www.ebi.ac.uk/~zerbino/oases]
Quackenbush J: Computational analysis of microarray data. Nat Rev Genet. 2001, 2: 418-427. 10.1038/35076576.
CAS
PubMed
Google Scholar
Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ: Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J. 2006, 47: 761-775. 10.1111/j.1365-313X.2006.02829.x.
CAS
PubMed Central
Google Scholar
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M: MAPMAN: a user driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37: 914-939. 10.1111/j.1365-313X.2004.02016.x.
CAS
PubMed
Google Scholar
Thiel T, Michalek W, Varshney RK, Graner A: Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003, 106: 411-422.
CAS
PubMed
Google Scholar
Ellis JR, Burke JM: EST-SSRs as a resource for population genetic analyses. Heredity. 2007, 99: 125-132. 10.1038/sj.hdy.6801001.
CAS
PubMed
Google Scholar
Rozen S, Skaletsky H: Primer3 on the www for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology. Edited by: Krawetz S, Misener S. 2000, Totowa, NJ: Humana Press, 365-386.
Google Scholar
Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 2008, 18 (11): 1851-1858. 10.1101/gr.078212.108.
CAS
PubMed
PubMed Central
Google Scholar
Schnidelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN: COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 2001, 15 (9): 1115-1127. 10.1101/gad.879101.
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human gemone. Genome Biol. 2009, 10: R25-10.1186/gb-2009-10-3-r25.
PubMed
PubMed Central
Google Scholar
Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008, 320 (5881): 1344-1349. 10.1126/science.1158441.
CAS
PubMed
PubMed Central
Google Scholar
Ji W, Zhou W, Gregg K, Yu N, Davis S, Davis S: A method for cross-species gene expression analysis with high-density oligonucleotide arrays. Nucl Acids Res. 2004, 32: e93-10.1093/nar/gnh084.
PubMed
PubMed Central
Google Scholar
Yang SS, Valdés-López O, Xu WW, Bucciarelli B, Gronwald JW, Hernández G, Vance CP: Transcript profiling of common bean (Phaseolus vulgaris L.) using the GeneChip® Soybean Genome Array: optimizing analysis by masking biased probes. BMC Plant Biol. 2010, 10: 85-10.1186/1471-2229-10-85.
PubMed
PubMed Central
Google Scholar
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR: Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005, 139 (1): 5-17. 10.1104/pp.105.063743.
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Feng Z, Wang X, Wang X, Zhang X: DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010, 26: 136-138. 10.1093/bioinformatics/btp612.
PubMed
Google Scholar
Sampedro J, Cosgrove DJ: The expansin superfamily. Genome Biol. 2005, 6: 242-10.1186/gb-2005-6-12-242.
PubMed
PubMed Central
Google Scholar
Pelloux J, Rustérucci C, Mellerowicz EJ: New insights into pectin methylesterase structure and function. Trends Plant Sci. 2007, 12: 267-277. 10.1016/j.tplants.2007.04.001.
CAS
PubMed
Google Scholar
Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR: The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell. 1999, 11: 769-779.
CAS
PubMed
PubMed Central
Google Scholar
Zhong R, Morrison WH, Freshour GD, Hahn MG, Ye ZH: Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis. Plant Physiol. 2003, 132: 786-795. 10.1104/pp.102.019331.
CAS
PubMed
PubMed Central
Google Scholar
Bosca S, Barton CJ, Taylor NG, Ryden P, Neumetzler L, Pauly M, Roberts K, Seifert GJ: Interactions between MUR10/Ces A7 dependent secondary cellulose biosynthesis and primary cell wall structure. Plant Physiol. 2006, 142: 1353-1363. 10.1104/pp.106.087700.
CAS
PubMed
PubMed Central
Google Scholar
Baucher M, Bernard-Vailhé MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M, Botterman J: Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Mol Biol. 1999, 39: 437-447. 10.1023/A:1006182925584.
CAS
PubMed
Google Scholar
Guo D, Chen F, Inoue K, Blount JW, Dixon RA: Down-regulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa (Medicago sativa L.): impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell. 2001, 13: 73-88.
CAS
PubMed
PubMed Central
Google Scholar
Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA: Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA. 2005, 102: 16573-16578. 10.1073/pnas.0505749102.
CAS
PubMed
PubMed Central
Google Scholar
Wooley R, Ruth M, Glassner D, Sheehan J: Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog. 1999, 15: 794-803. 10.1021/bp990107u.
CAS
PubMed
Google Scholar
Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A: Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis: current and futuristic scenarios. 1999, National Renewable Energy Laboratory, Golden CO, NREL/TP-580-26157
Google Scholar
Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J: Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. 2002, National Renewable Energy Laboratory, Golden CO, NREL/TP-510-32438
Google Scholar
Yang B, Wyman CE: Pretreatment: the key to unlocking low cost cellulosic ethanol. Biofuels Bioproducts & Biorefining. 2008, 2: 26-40. 10.1002/bbb.49.
CAS
Google Scholar
Turner SR, Somerville CR: Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell. 1997, 9: 689-701.
CAS
PubMed
PubMed Central
Google Scholar
Taylor NG, Laurie S, Turner SR: Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell. 2000, 12: 2529-2539.
CAS
PubMed
PubMed Central
Google Scholar
Sauer N: Molecular physiology of higher plant sucrose transporters. FEBS Lett. 2007, 581: 2309-2317. 10.1016/j.febslet.2007.03.048.
CAS
PubMed
Google Scholar
Riesmeier JW, Hirner B, Frommer WB: Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell. 1993, 5: 1591-1598.
CAS
PubMed
PubMed Central
Google Scholar
Truernit E, Sauer N: The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of beta-glucuronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta. 1995, 196: 564-570.
CAS
PubMed
Google Scholar
Stadler R, Truernit E, Gahrtz M, Sauer N: The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J. 1999, 19: 269-278. 10.1046/j.1365-313X.1999.00527.x.
CAS
PubMed
Google Scholar
Barth I, Meyer S, Sauer N: PmSUC3: characterization of a SUT2/SUC3-type sucrose transporter from Plantago major. Plant Cell. 2003, 15: 1375-1385. 10.1105/tpc.010967.
CAS
PubMed
PubMed Central
Google Scholar
Meyer S, Lauterbach C, Niedermeier M, Barth I, Sjolund RD, Sauer N: Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiol. 2004, 134: 684-693. 10.1104/pp.103.033399.
CAS
PubMed
PubMed Central
Google Scholar
Haigler CH, Singh B, Wang G, Zhang D: Genomics of cotton fiber secondary wall deposition and cellulose biogenesis. Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models 3. Edited by: Paterson AH. 2009, New York, USA: Springer Science Business Media, 385-417.
Google Scholar
Somerville CR: Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol. 2006, 22: 53-78. 10.1146/annurev.cellbio.22.022206.160206.
CAS
PubMed
Google Scholar
Fujii S, Hayashi T, Mizuno K: Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol. 2010, 51: 294-301. 10.1093/pcp/pcp190.
CAS
PubMed
Google Scholar
Rolland F, Baena-Gonzalez E, Sheen J: Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006, 57: 675-709. 10.1146/annurev.arplant.57.032905.105441.
CAS
PubMed
Google Scholar
Poirier Y, Thoma S, Somerville C, Schiefelbein J: Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 1991, 97: 1087-1093. 10.1104/pp.97.3.1087.
CAS
PubMed
PubMed Central
Google Scholar
Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, Somerville C, Poirier Y: Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell. 2002, 14: 889-902. 10.1105/tpc.000745.
CAS
PubMed
PubMed Central
Google Scholar
Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y: Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J. 2007, 50: 982-994. 10.1111/j.1365-313X.2007.03108.x.
CAS
PubMed
Google Scholar
Ribot C, Wang Y, Poirier Y: Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta. 2008, 227: 1025-1036. 10.1007/s00425-007-0677-x.
CAS
PubMed
Google Scholar
Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH: The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell. 2009, 21: 3554-3566. 10.1105/tpc.108.064980.
CAS
PubMed
PubMed Central
Google Scholar
Teale WD, Paponov IA, Palme K: Auxin in action: Signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 2006, 7: 847-859. 10.1038/nrm2020.
CAS
PubMed
Google Scholar
Ye ZH: Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol. 2002, 53: 183-202. 10.1146/annurev.arplant.53.100301.135245.
CAS
PubMed
Google Scholar
De Smet I, Jürgens G: Patterning the axis in plants - auxin in control. Curr Opin Genet Dev. 2007, 17: 337-343. 10.1016/j.gde.2007.04.012.
CAS
PubMed
Google Scholar
Lucas M, Godin C, Jay-Allemand C, Laplaze L: Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot. 2008, 59: 55-66.
CAS
PubMed
Google Scholar
Sundberg B, Uggla C, Tuominen H: Cambial growth and auxin gradients. Cell and Molecular Biology of Wood Formation. Edited by: Savidge R, Barnett J, Napier R. 2000, Oxford, UK: BIOS Scientific Publishers, 169-188.
Google Scholar
Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP: Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell. 2008, 20: 843-855. 10.1105/tpc.107.055798.
CAS
PubMed
PubMed Central
Google Scholar
Kim HJ, Triplett BA: Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001, 127: 1361-1366. 10.1104/pp.010724.
CAS
PubMed
PubMed Central
Google Scholar
Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA: Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science. 1996, 273: 948-950. 10.1126/science.273.5277.948.
CAS
PubMed
Google Scholar
Zhao C, Craig JC, Petzold HE, Dickerman AW, Beers EP: The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol. 2005, 138 (2): 803-818. 10.1104/pp.105.060202.
CAS
PubMed
PubMed Central
Google Scholar
Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett M, Sandberg G: AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell. 2002, 14: 589-597. 10.1105/tpc.010354.
CAS
PubMed
PubMed Central
Google Scholar
Kakani A, Li G, Peng Z: Role of AUX1 in the control of organ identity during in vitro organogenesis and in mediating tissue-specific auxin and cytokinin interaction in Arabidopsis. Planta. 2009, 229: 645-657. 10.1007/s00425-008-0846-6.
CAS
PubMed
Google Scholar
Mattsson J, Sung ZR, Berleth T: Responses of plant vascular systems to auxin transport inhibition. Development. 1999, 126: 2979-2991.
CAS
PubMed
Google Scholar
Klee H, Estelle M: Molecular genetic approaches to plant hormone biology. Annu Rev Plant Physiol Plant Mol Biol. 1991, 42: 529-551. 10.1146/annurev.pp.42.060191.002525.
CAS
Google Scholar
Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ: AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J. 1999, 18: 2066-2073. 10.1093/emboj/18.8.2066.
CAS
PubMed
PubMed Central
Google Scholar
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J: Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003, 115: 591-602. 10.1016/S0092-8674(03)00924-3.
PubMed
Google Scholar
Blancaflor EB, Masson PH: Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol. 2003, 133: 1677-1690. 10.1104/pp.103.032169.
CAS
PubMed
PubMed Central
Google Scholar
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B: The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005, 433: 39-44. 10.1038/nature03184.
CAS
PubMed
Google Scholar
Li X, Chapple C: Understanding lignification: challenges beyond monolignol biosynthesis. Plant Physiol. 2010, 154: 449-452. 10.1104/pp.110.162842.
CAS
PubMed
PubMed Central
Google Scholar
Bonawitz ND, Chapple C: The genetics of lignin biosynthesis: connecting genotype to phenotype. Ann Rev Genet. 2010, 44: 337-363. 10.1146/annurev-genet-102209-163508.
CAS
PubMed
Google Scholar
Boija E, Johansson G: Interactions between model membranes and lignin-related compounds studied by immobilized liposome chromatography. Biochim Biophys Acta. 2006, 1758: 620-626. 10.1016/j.bbamem.2006.04.007.
CAS
PubMed
Google Scholar
Kaneda M, Rensing KH, Wong JCT, Banno B, Mansfield SD, Samuels AL: Tracking monolignols during wood development in lodgepole pine. Plant Physiol. 2008, 147: 1750-1760. 10.1104/pp.108.121533.
CAS
PubMed
PubMed Central
Google Scholar
Marinova K, Pourcel L, Weber B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M: The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell. 2007, 19 (6): 2023-2038. 10.1105/tpc.106.046029.
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Dixon RA: MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell. 2009, 21: 2323-2340. 10.1105/tpc.109.067819.
CAS
PubMed
PubMed Central
Google Scholar
Yazaki K: ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 2006, 580: 1183-1191. 10.1016/j.febslet.2005.12.009.
CAS
PubMed
Google Scholar
Rea PA: Plant ATP-binding cassette transporters. Annu Rev Plant Biol. 2007, 58: 347-375. 10.1146/annurev.arplant.57.032905.105406.
CAS
PubMed
Google Scholar
Usadel B, Nagel A, Steinhauser D, Gibon Y, Bläsing OE, Redestig H, Sreenivasulu N, Krall L, Hannah MA, Poree F, Fernie AR, Stitt M: PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics. 2006, 7: 535-10.1186/1471-2105-7-535.
PubMed
PubMed Central
Google Scholar
Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998, 95: 14863-14868. 10.1073/pnas.95.25.14863.
CAS
PubMed
PubMed Central
Google Scholar
Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008, 3 (6): 1101-1108. 10.1038/nprot.2008.73.
CAS
PubMed
Google Scholar