Moss B: Poxviridae: The Viruses and Their Replication. Fields Virology. Edited by: Knipe DM,Howley PM,Griffin DG, et al. 2007, Philadelphia: Lippincott Williams & Wilkins, 5
Google Scholar
Upton C, Slack S, Hunter AL, Ehlers A, Roper RL: Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol. 2003, 77 (13): 7590-600. 10.1128/JVI.77.13.7590-7600.2003.
CAS
PubMed
PubMed Central
Google Scholar
Gubser C, Hué S, Kellam P, Smith GL: Poxvirus genomes: A phylogenetic analysis. J Gen Virol. 2004, 85 (1): 105-117. 10.1099/vir.0.19565-0.
CAS
PubMed
Google Scholar
Lefkowitz EJ, Wang C, Upton C: Poxviruses: past, present and future. Virus Res. 2006, 117 (1): 105-18. 10.1016/j.virusres.2006.01.016.
CAS
PubMed
Google Scholar
Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G: Poxviruses and immune evasion. Annu Rev Immunol. 2003, 21: 377-423. 10.1146/annurev.immunol.21.120601.141049.
CAS
PubMed
Google Scholar
Perdiguero B, Esteban M: The interferon system and vaccinia virus evasion mechanisms. Journal of Interferon and Cytokine Research. 2009, 29 (9): 581-598. 10.1089/jir.2009.0073.
CAS
PubMed
Google Scholar
Taylor JM, Barry M: Near death experiences: Poxvirus regulation of apoptotic death. Virology. 2006, 344 (1): 139-150. 10.1016/j.virol.2005.09.032.
CAS
PubMed
Google Scholar
Hughes AL, Friedman R: Poxvirus genome evolution by gene gain and loss. Mol Phylogenet Evol. 2005, 35 (1): 186-95. 10.1016/j.ympev.2004.12.008.
CAS
PubMed
Google Scholar
Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics. 1998, 148 (3): 929-936.
CAS
PubMed
PubMed Central
Google Scholar
Yang Z: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol. 1998, 15 (5): 568-573.
CAS
PubMed
Google Scholar
Yang Z, Nielsen R, Goldman N, Pedersen AK: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000, 155 (1): 431-449.
CAS
PubMed
PubMed Central
Google Scholar
Anisimova M, Bielawski JP, Yang Z: Accuracy and power of Bayes prediction of amino acid sites under positive selection. Mol Biol Evol. 2002, 19 (6): 950-958.
CAS
PubMed
Google Scholar
The Virus Bioinformatics Resource Center. [http://www.biovirus.org]
Esteban DJ, Buller RML: Ectromelia virus: The causative agent of mousepox. J Gen Virol. 2005, 86 (10): 2645-2659. 10.1099/vir.0.81090-0.
CAS
PubMed
Google Scholar
Gubser C, Smith GL: The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol. 2002, 83 (Pt 4): 855-72.
CAS
PubMed
Google Scholar
Yoder JD, Chen TS, Gagnier CR, Vemulapalli S, Maier CS, Hruby DE: Pox proteomics: Mass spectrometry analysis and identification of Vaccinia virion proteins. Virology Journal. 2006, 3: 10-10.1186/1743-422X-3-10.
PubMed
PubMed Central
Google Scholar
Chung C, Chen C, Ho M, Huang C, Liao C, Chang W: Vaccinia virus proteome: Identification of proteins in vaccinia virus intracellular mature virion particles. J Virol. 2006, 80 (5): 2127-2140. 10.1128/JVI.80.5.2127-2140.2006.
CAS
PubMed
PubMed Central
Google Scholar
Yang Z, Wong WSW, Nielsen R: Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005, 22 (4): 1107-1118. 10.1093/molbev/msi097.
CAS
PubMed
Google Scholar
McLysaght A, Baldi PF, Gaut BS: Extensive gene gain associated with adaptive evolution of poxviruses. Proc Natl Acad Sci USA. 2003, 100 (26): 15655-15660. 10.1073/pnas.2136653100.
CAS
PubMed
Google Scholar
Elde NC, Child SJ, Geballe AP, Malik HS: Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature. 2009, 457 (7228): 485-489. 10.1038/nature07529.
CAS
PubMed
Google Scholar
Hughes AL: Origin and evolution of viral interleukin-10 and other DNA virus genes with vertebrate homologues. J Mol Evol. 2002, 54 (1): 90-101. 10.1007/s00239-001-0021-1.
CAS
PubMed
Google Scholar
Born TL, Morrison LA, Esteban DJ, VandenBos T, Thebeau LG, Chen N, Spriggs MK, Sims JE, Buller RML: A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. Journal of Immunology. 2000, 164 (6): 3246-3254.
CAS
Google Scholar
Spriggs MK, Hruby DE, Maliszewski CR, Pickup DJ, Sims JE, Buller RML, VanSlyke J: Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell. 1992, 71 (1): 145-152. 10.1016/0092-8674(92)90273-F.
CAS
PubMed
Google Scholar
Sakala IG, Chaudhri G, Buller RM, Nuara AA, Bai H, Chen N, Karupiah G: Poxvirus-encoded gamma interferon binding protein dampens the host immune response to infection. J Virol. 2007, 81 (7): 3346-3353. 10.1128/JVI.01927-06.
CAS
PubMed
PubMed Central
Google Scholar
Brandt TA, Jacobs BL: Both carboxy- and amino-terminal domains of the vaccinia virus interferon resistance gene, E3L, are required for pathogenesis in a mouse model. J Virol. 2001, 75 (2): 850-856. 10.1128/JVI.75.2.850-856.2001.
CAS
PubMed
PubMed Central
Google Scholar
Wasilenko ST, Stewart TL, Meyers AF, Barry M: Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc Natl Acad Sci USA. 2003, 100 (24): 14345-50. 10.1073/pnas.2235583100.
CAS
PubMed
Google Scholar
Huang J, Huang Q, Zhou X, Shen MM, Yen A, Yu SX, Dong G, Qu K, Huang P, Anderson EM, Daniel-Issakani S, Buller RM, Payan DG, Lu HH: The poxvirus p28 virulence factor is an E3 ubiquitin ligase. J Biol Chem. 2004, 279 (52): 54110-6. 10.1074/jbc.M410583200.
CAS
PubMed
Google Scholar
Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, O'Neill LA: The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med. 2003, 197 (3): 343-51. 10.1084/jem.20021652.
CAS
PubMed
PubMed Central
Google Scholar
Moss B: Smallpox vaccines: Targets of protective immunity. Immunol Rev. 2011, 239 (1): 8-26. 10.1111/j.1600-065X.2010.00975.x.
CAS
PubMed
PubMed Central
Google Scholar
Davies DH, Molina DM, Wrammert J, Miller J, Hirst S, Mu Y, Pablo J, Unal B, Nakajima-Sasaki R, Liang X, Crotty S, Karem KL, Damon IK, Ahmed R, Villarreal L, Felgner PL: Proteome-wide analysis of the serological response to vaccinia and smallpox. Proteomics. 2007, 7 (10): 1678-1686. 10.1002/pmic.200600926.
CAS
PubMed
Google Scholar
Odom MR, Curtis Hendrickson R, Lefkowitz EJ: Poxvirus protein evolution: Family wide assessment of possible horizontal gene transfer events. Virus Res. 2009, 144 (1-2): 233-249. 10.1016/j.virusres.2009.05.006.
CAS
PubMed
PubMed Central
Google Scholar
Bishop JG: Directed mutagenesis confirms the functional importance of positively selected sites in polygalacturonase inhibitor protein. Mol Biol Evol. 2005, 22 (7): 1531-1534. 10.1093/molbev/msi146.
CAS
PubMed
Google Scholar
Haydon DT, Bastos AD, Knowles NJ, Samuel AR: Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics. 2001, 157 (1): 7-15.
CAS
PubMed
PubMed Central
Google Scholar
Krumm B, Meng X, Li Y, Xiang Y, Deng J: Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein. Proc Natl Acad Sci USA. 2008, 105 (52): 20711-20715. 10.1073/pnas.0809086106.
CAS
PubMed
Google Scholar
Esteban DJ, Buller RML: Identification of residues in an orthopoxvirus interleukin-18 binding protein involved in ligand binding and species specificity. Virology. 2004, 323 (2): 197-207. 10.1016/j.virol.2004.02.027.
CAS
PubMed
Google Scholar
Campbell S, Hazes B, Kvansakul M, Colman P, Barry M: Vaccinia virus F1L interacts with Bak using highly divergent Bcl-2 homology domains and replaces the function of Mcl-1. J Biol Chem. 2010, 285 (7): 4695-4708. 10.1074/jbc.M109.053769.
CAS
PubMed
Google Scholar
Kvansakul M, Yang H, Fairlie WD, Czabotar PE, Fischer SF, Perugini MA, Huang DCS, Colman PM: Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ. 2008, 15 (10): 1564-1571. 10.1038/cdd.2008.83.
CAS
PubMed
Google Scholar
Bishop JG, Dean AM, Mitchell-Olds T: Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution. Proc Natl Acad Sci USA. 2000, 97 (10): 5322-5327. 10.1073/pnas.97.10.5322.
CAS
PubMed
Google Scholar
Jiggins FM, Hurst GDD, Yang Z: Host-symbiont conflicts: Positive selection on an outer membrane protein of parasitic but not mutualistic Rickettsiaceae. Mol Biol Evol. 2002, 19 (8): 1341-1349.
CAS
PubMed
Google Scholar
Zanotto PMDA, Kallas EG, De Souza RF, Holmes EC: Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics. 1999, 153 (3): 1077-1089.
CAS
PubMed
PubMed Central
Google Scholar
Yang W, Bielawski JP, Yang Z: Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J Mol Evol. 2003, 57 (2): 212-221. 10.1007/s00239-003-2467-9.
CAS
PubMed
Google Scholar
Hughes AL, Hughes MK, Howell CY, Nei M: Natural selection at the class II major histocompatibility complex loci of mammals. Philosophical transactions of the Royal Society of London.Series B: Biological sciences. 1994, 346 (1317): 359-366. 10.1098/rstb.1994.0153.
CAS
PubMed
Google Scholar
Yang Z, Nielsent R: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002, 19 (6): 908-917.
CAS
PubMed
Google Scholar
Endo T, Ikeo K, Gojobori T: Large-scale search for genes on which positive selection may operate. Mol Biol Evol. 1996, 13 (5): 685-690.
CAS
Google Scholar
Bush RM, Fitch WM, Bender CA, Cox NJ: Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol. 1999, 16 (11): 1457-1465.
CAS
PubMed
Google Scholar
Yamaguchi-Kabata Y, Gojobori T: Reevaluation of amino acid variability of the human immunodeficiency virus type 1 gp120 envelope glycoprotein and prediction of new discontinuous epitopes. J Virol. 2000, 74 (9): 4335-4350. 10.1128/JVI.74.9.4335-4350.2000.
CAS
PubMed
PubMed Central
Google Scholar
Simmonds P: Recombination and selection in the evolution of picornaviruses and other mammalian positive-stranded RNA viruses. J Virol. 2006, 80 (22): 11124-11140. 10.1128/JVI.01076-06.
CAS
PubMed
PubMed Central
Google Scholar
Van Hemert FJ, Lukashov VV, Berkhout B: Different rates of (non-)synonymous mutations in astrovirus genes; correlation with gene function. Virology Journal. 2007, 4:
Google Scholar
Lewis-Rogers N, Bendall ML, Crandall KA: Phylogenetic relationships and molecular adaptation dynamics of human rhinoviruses. Mol Biol Evol. 2009, 26 (5): 969-981. 10.1093/molbev/msp009.
CAS
PubMed
Google Scholar
Anisimova M, Bielawski J, Dunn K, Yang Z: Phylogenomic analysis of natural selection pressure in Streptococcus genomes. BMC Evolutionary Biology. 2007, 7: 154-10.1186/1471-2148-7-154.
PubMed
PubMed Central
Google Scholar
Chen SL, Hung C-, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI: Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: A comparative genomics approach. Proc Natl Acad Sci USA. 2006, 103 (15): 5977-5982. 10.1073/pnas.0600938103.
CAS
PubMed
Google Scholar
Löytynoja A, Goldman N: Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008, 320 (5883): 1632-1635. 10.1126/science.1158395.
PubMed
Google Scholar
Fletcher W, Yang Z: The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol Biol Evol. 2010, 27 (10): 2257-2267. 10.1093/molbev/msq115.
CAS
PubMed
Google Scholar
Yang Z: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007, 24 (8): 1586-1591. 10.1093/molbev/msm088.
CAS
PubMed
Google Scholar