Spillane C, Curtis MD, Grossniklaus U: Apomixis technology development-virgin births in farmers' fields?. Nature Biotechnology. 2004, 22: 687-691. 10.1038/nbt976.
Article
CAS
PubMed
Google Scholar
Delmotte F, Letterme M, Bonhomme J, Rispe C, Simon JC: Multiple routes to asexuality in an aphid species. Pro R Soc Lond B. 2001, 268: 2291-2299. 10.1098/rspb.2001.1778.
Article
CAS
Google Scholar
Simon JC, Delmotte F, Rispe C, Crease T: Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol J Linn Soc Lond. 2003, 79: 151-163. 10.1046/j.1095-8312.2003.00175.x.
Article
Google Scholar
Koch M, Bishop J, Mitchell-Olds T: Molecular systematics and evolution of Arabidopsis and Arabis. Plant Biology. 1999, 1: 529-537. 10.1111/j.1438-8677.1999.tb00779.x.
Article
Google Scholar
Böcher TW: Cytological and embryological studies in the amphi-apomictic Arabis holboellii complex. Det Kongelige Danske Videnskabernes Selskab. 1951, 6: 1-59.
Google Scholar
Koch MA, Dobeš C, Mitchell-Olds T: Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol. Biol. Evol. 2003, 20: 338-350. 10.1093/molbev/msg046.
Article
CAS
PubMed
Google Scholar
Kiefer C, Dobeš C, Sharbel TF, Koch MA: Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera - A genus and continental-wide perspective. Molecular Phylogenetics and Evolution. 2009, 52: 303-311. 10.1016/j.ympev.2009.03.016.
Article
CAS
PubMed
Google Scholar
Koltunow AM, Grossniklaus U: Apomixis: A developmental perspective. Annu Rev Plant Biol. 2003, 54: 547-574. 10.1146/annurev.arplant.54.110901.160842.
Article
CAS
PubMed
Google Scholar
Carman JG: Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc Lond. 1997, 61: 51-94. 10.1111/j.1095-8312.1997.tb01778.x.
Article
Google Scholar
Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC: Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet. 2004, 36: 1282-1290. 10.1038/ng1478.
Article
CAS
PubMed
Google Scholar
Felippes FF, Schneeberger K, Dezulian T, Hudson DH, Weigel D: Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA. 2008, 14 (12): 2455-2459. 10.1261/rna.1149408.
Article
PubMed
Google Scholar
Sunkar R, Zhu JK: MicroRNAs and short-interfering RNAs in plants. J Integr Plant Biol. 2007, 49: 817-826. 10.1111/j.1744-7909.2007.00499.x.
Article
CAS
Google Scholar
Jagadeeswaran G, Saini A, Sunkar R: Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta. 2009, 229: 1009-1014. 10.1007/s00425-009-0889-3.
Article
CAS
PubMed
Google Scholar
Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC: Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes and Development. 2004, 18 (10): 1179-1186. 10.1101/gad.1201204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mallory AC, Reinhart BJ, Jones-Rhoades MW: MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. The EMBO Journal. 2004, 23 (16): 3356-3364. 10.1038/sj.emboj.7600340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D: Control of leaf morphogenesis by microRNAs. Nature. 2003, 425: 257-263. 10.1038/nature01958.
Article
CAS
PubMed
Google Scholar
Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Oliver Y: Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics. 2009, 9: 160-
Article
Google Scholar
Millar AA, Gubler F: The Arabidopsis GAMYBlike genes, MYB33 and MYB65, are MicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell. 2005, 17 (3): 705-721. 10.1105/tpc.104.027920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olmedo-Monfil V, Dura'n-Figueroa N, Arteaga-Va'zquez M, Demesa-Are'valo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP: Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature. 2010
Google Scholar
Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004, 14: 787-799. 10.1016/j.molcel.2004.05.027.
Article
Google Scholar
Han MH, Goud S, Song L, Fedoroff N: The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA. 2004, 101: 1093-1098. 10.1073/pnas.0307969100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vazquez F, Gasciolli V, Crete P, Vaucheret H: The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol. 2004, 14: 346-351.
Article
CAS
PubMed
Google Scholar
Yang L, Liu Z, Lu F, Dong A, Huang H: SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J. 2006, 47: 841-850. 10.1111/j.1365-313X.2006.02835.x.
Article
CAS
PubMed
Google Scholar
Vaucheret H, Vazquez F, Crete P, Bartel DP: The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Dev. 2004, 18: 1187-1197. 10.1101/gad.1201404.
Article
CAS
Google Scholar
Baumberger N, Baulcombe DC: Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA. 2005, 102: 11928-11933. 10.1073/pnas.0505461102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction of plant microRNA targets. Cell. 2002, 110: 513-520. 10.1016/S0092-8674(02)00863-2.
Article
CAS
PubMed
Google Scholar
Chen X: A miRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004, 303: 2022-2025. 10.1126/science.1088060.
Article
CAS
PubMed
Google Scholar
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O: Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008, 320 (5880): 1185-90. 10.1126/science.1159151.
Article
CAS
PubMed
Google Scholar
Zhang B, Pan X, Anderson TA: Identification of 188 conserved maize microRNAs and their targets. FEBS J. 2006, 580 (15): 3753-3762a. 10.1016/j.febslet.2006.05.063.
Article
CAS
Google Scholar
Zhou ZS, Huang SQ, Yang ZM: Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochemical and Biophysical Research Communications. 2008, 374 (3): 538-542. 10.1016/j.bbrc.2008.07.083.
Article
CAS
PubMed
Google Scholar
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Dev. 2006, 20: 3407-3425. 10.1101/gad.1476406.
Article
CAS
Google Scholar
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC: High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS ONE. 2007, 2: e219-10.1371/journal.pone.0000219.
Article
PubMed
PubMed Central
Google Scholar
Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, and Sun Q: Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 2007, 8: R96-10.1186/gb-2007-8-6-r96.
Article
PubMed
PubMed Central
Google Scholar
Moxon S, Jing R, Szittya G, Schwach F, Pilcher RLR, Moulton V, Dalmay T: Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008, 18: 1602-1609. 10.1101/gr.080127.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunkar R, Zhu JK: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004, 16: 2001-2019. 10.1105/tpc.104.022830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunkar R, Girke T, Jain PK, Zhu JK: Cloning and characterization of microRNAs from rice. Plant Cell. 2005, 17: 1397-1411. 10.1105/tpc.105.031682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amiteye S, Corral JM, Sharbel TF: Overview of the potential of microRNAs and their target gene detection for cassava (Manihot esculenta) improvement. African Journal of Biotechnology. 2011, 10 (14): 2562-2573.
Article
CAS
Google Scholar
Zhao L, Kim Y, Dinh TT, Chen X: miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. The Plant Journal. 2007, 51: 840-849. 10.1111/j.1365-313X.2007.03181.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharbel TF, Voigt ML, Corral JM, Thiel T, Varshney A, Kumlehn J, Vogel H, Rotter B: Molecular signatures of apomictic and sexual ovules in the Boechera holboellii complex. Plant J. 2009, 58: 870-882. 10.1111/j.1365-313X.2009.03826.x.
Article
CAS
PubMed
Google Scholar
Sharbel TF, Voigt ML, Corral JM, Galla G, Kumlehn J, Klukas C, Schreiber F, Vogel H, Rotter B: Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell. 2010, 22: 655-671. 10.1105/tpc.109.072223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Pan X, Stellwag EJ: Identification of soybean microRNAs and their targets. Planta. 2008, 229: 161-182. 10.1007/s00425-008-0818-x.
Article
CAS
PubMed
Google Scholar
Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA: Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci. 2006, 63: 246-254. 10.1007/s00018-005-5467-7.
Article
CAS
PubMed
Google Scholar
Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA: Conservation and divergence of plant microRNA genes. The Plant Journal. 2006, 46: 243-259. 10.1111/j.1365-313X.2006.02697.x.
Article
CAS
PubMed
Google Scholar
Seffens W, Digby D: mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 1999, 27: 1578-1584. 10.1093/nar/27.7.1578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonnet E, Wuyts J, Rouze P: Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformation. 2004, 20: 2911-2917. 10.1093/bioinformatics/bth374.
Article
CAS
Google Scholar
Jaeger JA, Turner DH, Zuker M: Predicting optimal and suboptimal secondary structure for RNA, in "Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences". Methods in Enzymology. Edited by: Doolittle RF. 1990, 183: 281-306.
Google Scholar
McCaskill JS: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers. 1990, 29 (6-7): 1105-1119. 10.1002/bip.360290621.
Article
CAS
PubMed
Google Scholar
Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31 (13): 3406-3415. 10.1093/nar/gkg595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colaiacovo M, Subacchi A, Bagnaresi P, Lamontanara A, Cattivelli L, Faccioli P: A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.). BMC Genomics. 2010, 11: 595-10.1186/1471-2164-11-595.
Article
PubMed
PubMed Central
Google Scholar
Thakur V, Wanchana S, Xu M, Bruskiewich R, Quick WP, Mosig A, Zhu X: Characterization of statistical features for plant microRNA prediction. BMC Genomics. 2011, 12: 108-10.1186/1471-2164-12-108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonnet E, Wuyts J, Rouze P, de Peer YV: Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA. 2004, 101: 11511-11516. 10.1073/pnas.0404025101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA: Identification and characterization of new plant microRNAs using EST analysis. Cell Research. 2005, 15: 336-360. 10.1038/sj.cr.7290302.
Article
PubMed
Google Scholar
Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X: Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L., ssp. Indica). Front Biol. 2010, 5 (1): 67-90. 10.1007/s11515-010-0007-8.
Article
CAS
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006, 57: 19-53. 10.1146/annurev.arplant.57.032905.105218.
Article
CAS
PubMed
Google Scholar
Chiou TJ: The role of microRNAs in sensing nutrient stress. Plant Cell Environ. 2007, 30: 323-332. 10.1111/j.1365-3040.2007.01643.x.
Article
CAS
PubMed
Google Scholar
Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P: The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early Flowering by translational inhibition in seedlings. Plant J. 2007, 49: 683-693. 10.1111/j.1365-313X.2006.02983.x.
Article
CAS
PubMed
Google Scholar
Aukerman MJ, Sakai H: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell. 2003, 15: 2730-2741. 10.1105/tpc.016238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker CC, Sieber P, Wellmer F, Meyerowitz EM: The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol. 2005, 15: 303-315. 10.1016/j.cub.2005.02.017.
Article
CAS
PubMed
Google Scholar
Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC: P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell. 2003, 4: 205-217. 10.1016/S1534-5807(03)00025-X.
Article
CAS
PubMed
Google Scholar
Vierstra RD: The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 2003, 8: 135-142. 10.1016/S1360-1385(03)00014-1.
Article
CAS
PubMed
Google Scholar
Kim JH, Choi D, Kende H: The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J. 2003, 36: 94-104. 10.1046/j.1365-313X.2003.01862.x.
Article
CAS
PubMed
Google Scholar
Grossniklaus U: From sexuality to apomixis: molecular and genetic approaches. The Flowering of Apomixis: From Mechanisms to Genetic Engineering. Edited by: Savidan Y, Carman JG, Dresselhaus T. 2001, Mexico: CIMMYT, IRD European Commission DG VI (FAIR), 168-211.
Google Scholar
Aliyu OM, Schranz ME, Sharbel TF: Quantitative variation for apomixis components in the genus Boechera. Am J Bot. 2010, 97 (10): 1719-1731. 10.3732/ajb.1000188.
Article
PubMed
Google Scholar
Smyth DR, Bowman JL, Meyerowitz EM: Early flower development in Arabidopsis. Plant Cell. 1990, 2: 755-767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, Wang T, Ling Y, Su Z: PMRD: plant microRNA database. Nucleic Acids Research. 2010, 38: D806-D813. 10.1093/nar/gkp818.
Article
CAS
PubMed
Google Scholar
Gao X, Gulari E, Zhou X: In situ synthesis of oligonucleotide microarrays. Biopolymers. 2004, 73: 579-596. 10.1002/bip.20005.
Article
CAS
PubMed
Google Scholar
Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003, 19: 185-193. 10.1093/bioinformatics/19.2.185.
Article
CAS
PubMed
Google Scholar
Zhang Y: miRU: an automated plant miRNA target prediction server. Nucleic Acids Res. 2005, W701-W704. 33 Web Server
Pellino M, Sharbel TF, Mau M, Amiteye S, Corral JM: Selection of reference genes for quantitative real-time PCR expression studies of micro-dissected reproductive tissues in apomictic and sexual Boechera. BMC Research Notes. 2011, 4: 303-10.1186/1756-0500-4-303.
Article
CAS
PubMed
PubMed Central
Google Scholar