Ohno S: Evolution by gene duplication. 1970, Berlin: Springer-Verlag
Book
Google Scholar
Force A, Lynch M, Pickett B, Amores A, Yan YL, Postlethwait JH: Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999, 151: 1531-1545.
CAS
PubMed
PubMed Central
Google Scholar
Taylor JS, Van de Peer Y, Meyer A: Genome duplication, divergent resolution and speciation. Trends in Genetics. 2001, 17: 299-301. 10.1016/S0168-9525(01)02318-6.
Article
CAS
PubMed
Google Scholar
Dean EJ, Davis JC, Davis RW, Petrov DA: Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genet. 2008, 4: e1000113-10.1371/journal.pgen.1000113.
Article
PubMed
PubMed Central
Google Scholar
Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science. 2000, 290: 1151-1155. 10.1126/science.290.5494.1151.
Article
CAS
PubMed
Google Scholar
Chain FJJ, Evans BJ: Multiple mechanisms promote the retained expression of gene duplicates in the tetraploid frog Xenopus laevis. PLoS Genetics. 2006, 2: e56-10.1371/journal.pgen.0020056.
Article
PubMed
PubMed Central
Google Scholar
Proulx S, Phillips P: Allelic divergence precedes and promotes gene duplication. Evolution Int J Org Evolution. 2006, 60: 881-892.
Article
CAS
Google Scholar
Stoltzfus A: On the possibility of constructive neutral evolution. Journal of Molecular Evolution. 1999, 49: 169-181. 10.1007/PL00006540.
Article
CAS
PubMed
Google Scholar
Gibson TJ, Spring J: Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Trends in Genetics. 1998, 14: 46-49. 10.1016/S0168-9525(97)01367-X.
Article
CAS
PubMed
Google Scholar
Ferris SD, Whitt GS: Evolution of the differential regulation of duplicate genes after polyploidization. Journal of Molecular Evolution. 1979, 12: 267-317. 10.1007/BF01732026.
Article
CAS
PubMed
Google Scholar
Sidow A: Gen(om)e duplications in the evolution of early vertebrates. Current Opinion in Genetics and Development. 1996, 6: 715-722. 10.1016/S0959-437X(96)80026-8.
Article
CAS
PubMed
Google Scholar
Gitelman I: Evolution of the vertebrate twist family and synfunctionalization: a mechanism for differential gene loss through merging of expression domains. Molecular Biology and Evolution. 2007, 24: 1912-1925. 10.1093/molbev/msm120.
Article
CAS
PubMed
Google Scholar
Aury J-M, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Segurens B, Daubin V, Anthouard V, Aiach N, et al: Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature. 2006, 444: 171-178. 10.1038/nature05230.
Article
CAS
PubMed
Google Scholar
Kondrashov FA, Koonin EV: A common framework for understanding the origin of geneitc dominance and evolutionary fates of gene duplications. Trends Genet. 2004, 20: 287-290. 10.1016/j.tig.2004.05.001.
Article
CAS
PubMed
Google Scholar
Rodin SN, Parkhomchuk DV, Rodin AS, Holmquist GP, Riggs AD: Repositioning-dependent fate of duplicate genes. DNA and Cell Biology. 2005, 24: 529-542. 10.1089/dna.2005.24.529.
Article
CAS
PubMed
Google Scholar
Blomme T, Vandepoele K, De Bodt S, Simillion C, Maere S, Van de Peer Y: The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol. 2006, 7: R43-10.1186/gb-2006-7-5-r43.
Article
PubMed
PubMed Central
Google Scholar
Casneuf T, De Bodt S, Raes J, Maere S, Van de Peer Y: Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biol. 2006, 7: R13-10.1186/gb-2006-7-2-r13.
Article
PubMed
PubMed Central
Google Scholar
Chapman BA, Bowers JE, Feltus FA, Paterson AH: Buffering of crucial functional by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc Nat Acad Sci. 2006, 103: 2730-2735. 10.1073/pnas.0507782103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis JC, Petrov DA: Do disparate mechanisms of duplication add similar genes to the genome?. Trends Genet. 2005, 21: 548-555. 10.1016/j.tig.2005.07.008.
Article
CAS
PubMed
Google Scholar
Hakes L, Pinney J, Lovell S, Oliver S, Robertson D: All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biol. 2007, 8: R209-10.1186/gb-2007-8-10-r209.
Article
PubMed
PubMed Central
Google Scholar
Papp B, Pál C, Hurst LD: Dosage sensitivity and the evolution of gene families in yeast. Nature. 2003, 424: 194-197. 10.1038/nature01771.
Article
CAS
PubMed
Google Scholar
Qian W, Zhang J: Gene dosage and gene duplicability. Genetics. 2008, 179: 2319-2324. 10.1534/genetics.108.090936.
Article
PubMed
PubMed Central
Google Scholar
Sémon M, Wolfe KH: Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proceedings of the National Academy of Sciences. 2008, 105: 8333-8338. 10.1073/pnas.0708705105.
Article
Google Scholar
Birchler JA, Veitia RA: The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytologist. 2010, 186: 54-62. 10.1111/j.1469-8137.2009.03087.x.
Article
CAS
PubMed
Google Scholar
Makino T, McLysaght A: Ohnologs in the human genome are dosage balanced and frequently associated with disease. Proceedings of the National Academy of Sciences. 2010, 107: 9270-9274. 10.1073/pnas.0914697107.
Article
CAS
Google Scholar
Edger P, Pires J: Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Research. 2009, 17: 699-717. 10.1007/s10577-009-9055-9.
Article
CAS
PubMed
Google Scholar
Gout J-F, Kahn D, Duret L, Paramecium Post-Genomics C: The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLoS Genet. 2010, 6: e1000944-10.1371/journal.pgen.1000944.
Article
PubMed
PubMed Central
Google Scholar
Sankoff D, Zheng C, Zhu Q: The collapse of gene complement following whole genome duplication. BMC Genomics. 2010, 11: 313-10.1186/1471-2164-11-313.
Article
PubMed
PubMed Central
Google Scholar
Thomas BC, Perdersen B, Freeling M: Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 2006, 16: 934-946. 10.1101/gr.4708406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pál C, Papp B, Hurst LD: Highly expressed genes in yeast evolve slowly. Genetics. 2001, 158: 927-931.
PubMed
PubMed Central
Google Scholar
Duret L, Mouchiroud D: Determinants of substitution rates in mammalian genes: expression pattern affects seleciton intensity but not mutation rate. Molecular Biology and Evolution. 2000, 17: 68-74.
Article
CAS
PubMed
Google Scholar
Gu X, Su Z: Tissue-driven hypothesis of genomic evolution and sequence-expression correlations. Proceedings of the National Academy of Sciences. 2007, 104: 2779-2784. 10.1073/pnas.0610797104.
Article
CAS
Google Scholar
Zhang L, Li W-H: Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol. 2004, 21: 236-239.
Article
PubMed
Google Scholar
Kim S-H, Yi SV: Correlated asymmetry of sequence and functional divergence between duplicate proteins of Saccharomyces cerevisiae. Mol Biol Evol. 2006, 23: 1068-1075. 10.1093/molbev/msj115.
Article
PubMed
Google Scholar
Yang J, Su AI, Li W-H: Gene expression evolves faster in narrowly than in broadly expressed mammalian genes. Mol Biol Evol. 2005, 22: 2113-2118. 10.1093/molbev/msi206.
Article
CAS
PubMed
Google Scholar
Hastings K: Strong evolutionary conservation of broadly expressed protein isoforms in the troponin I gene family and other vertebrate gene families. Journal of Molecular Evolution. 1996, 42: 631-640. 10.1007/BF02338796.
Article
CAS
PubMed
Google Scholar
Subramanian S, Kumar S: Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics. 2004, 168: 373-381. 10.1534/genetics.104.028944.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC: A mitochondrial DNA phylogeny of clawed frogs: phylogeography on sub-Saharan Africa and implications for polyploid evolution. Molecular Phylogenetics and Evolution. 2004, 33: 197-213. 10.1016/j.ympev.2004.04.018.
Article
CAS
PubMed
Google Scholar
Evans BJ: Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana). Frontiers in Bioscience. 2008, 13: 4687-4706.
Article
CAS
PubMed
Google Scholar
Studer RA, Robinson-Rechavi M: How confident can we be that orthologs are similar, but paralogs differ?. Trends in genetics: TIG. 2009, 25: 210-216. 10.1016/j.tig.2009.03.004.
Article
CAS
PubMed
Google Scholar
Bewick AJ, Anderson DW, Evans BJ: Evolution of the closely related, sex-related genes dm-w and dmrt1 in african clawed frogs (Xenopus). Evolution. 2011, 65: 698-712. 10.1111/j.1558-5646.2010.01163.x.
Article
CAS
PubMed
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chain FJJ, Ilieva D, Evans BJ: Duplicate gene evolution and expression in the wake of vertebrate allopolyploidization. BMC Evolutionary Biology. 2008, 8: 43-10.1186/1471-2148-8-43.
Article
PubMed
PubMed Central
Google Scholar
Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS. 1997, 13: 555-556.
CAS
PubMed
Google Scholar
Rodgers-Melnick E, Mane SP, Dharmawardhana P, Slavov GT, Crasta OR, Strauss SH, Brunner AM, DiFazio SP: Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Research. 2011
Google Scholar
R-Development-Core-Team: R: A language and environment for statistical computing, reference index version 2.10.1. 2005, R Foundation for Statistical Computing, Vienna, Austrai, ISBN 3-900051-07-0, [http://www.R-project.org]
Google Scholar
Artieri C, Haerty W, Singh R: Ontogeny and phylogeny: molecular signatures of selection, constraint, and temporal pleiotropy in the development of Drosophila. BMC Biology. 2009, 7: 42-10.1186/1741-7007-7-42.
Article
PubMed
PubMed Central
Google Scholar
Cherry JL: Expression level, evolutionary rate, and the cost of expression. Genome Biology and Evolution. 2010, 2: 757-769. 10.1093/gbe/evq059.
Article
PubMed
PubMed Central
Google Scholar
Su Z, Zeng Y, Gu X: A preliminary analysis of gene pleiotropy estimated from protein sequences. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2010, 314B: 115-122. 10.1002/jez.b.21315.
Article
CAS
Google Scholar
Freeling M, Thomas BC: Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research. 2006, 16: 805-814. 10.1101/gr.3681406.
Article
CAS
PubMed
Google Scholar
Lynch M, Force A: The probability of duplicate gene preservation by subfunctionalization. Genetics. 2000, 154: 459-473.
CAS
PubMed
PubMed Central
Google Scholar
He X, Zhang J: Gene complexity and gene duplicability. Current Biology. 2005, 15: 1016-1021. 10.1016/j.cub.2005.04.035.
Article
CAS
PubMed
Google Scholar
Brunet FG, Crollius HR, Paris M, Aury J-M, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M: Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol. 2006, 23: 1808-1816. 10.1093/molbev/msl049.
Article
CAS
PubMed
Google Scholar
Davis JC, Petrov DA: Preferential duplication of conserved proteins in eukaryotic genomes. PLoS Biology. 2004, 2: 318-326.
Article
CAS
Google Scholar
Rastogi S, Liberles D: Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evolutionary Biology. 2005, 5: 28-10.1186/1471-2148-5-28.
Article
PubMed
PubMed Central
Google Scholar
He X, Zhang J: Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. Genetics. 2005, 169: 1157-1164. 10.1534/genetics.104.037051.
Article
PubMed
PubMed Central
Google Scholar
Hellsten U, Khokha M, Grammer T, Harland R, Richardson P, Rokhsar D: Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. BMC Biology. 2007, 5: 31-10.1186/1741-7007-5-31.
Article
PubMed
PubMed Central
Google Scholar
Morin RD, Chang E, Petrescu A, Liao N, Griffith M, Kirkpatrick R, Butterfield YS, Young AC, Stott J, Barber S, et al: Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling. Genome Research. 2006, 16: 796-803. 10.1101/gr.4871006.
Article
PubMed
PubMed Central
Google Scholar
Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, et al: The Genome of the Western Clawed Frog Xenopus tropicalis. Science. 2010, 328: 633-636. 10.1126/science.1183670.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tirosh I, Barkai N: Comparative analysis indicates regulatory neofunctionalization of yeast duplicates. Genome Biology. 2007, 8: R50-10.1186/gb-2007-8-4-r50.
Article
PubMed
PubMed Central
Google Scholar
Qian W, Liao B-Y, Chang AY-F, Zhang J: Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends in Genetics. 2010, 26: 425-430. 10.1016/j.tig.2010.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar