Pfaller MA, Diekema DJ: Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007, 20 (1): 133-163. 10.1128/CMR.00029-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN: Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008-2009). Diagn Microbiol Infect Dis. 2010, 68 (3): 278-283. 10.1016/j.diagmicrobio.2010.06.015.
Article
PubMed
Google Scholar
Trofa D, Gacser A, Nosanchuk JD: Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev. 2008, 21 (4): 606-625. 10.1128/CMR.00013-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhn DM, Mukherjee PK, Clark TA, Pujol C, Chandra J, Hajjeh RA, Warnock DW, Soll DR, Ghannoum MA: Candida parapsilosis characterization in an outbreak setting. Emerg Infect Dis. 2004, 10: 1074-1081.
Article
PubMed
PubMed Central
Google Scholar
Clark TA, Slavinski SA, Morgan J, Lott T, Arthington-Skaggs BA, Brandt ME, Webb RM, Currier M, Flowers RH, Fridkin SK, et al: Epidemiologic and molecular characterization of an outbreak of Candida parapsilosis bloodstream infections in a community hospital. J Clin Microbiol. 2004, 42 (10): 4468-4472. 10.1128/JCM.42.10.4468-4472.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welbel SF, McNeil MM, Kuykendall RJ, Lott TJ, Pramanik A, Silberman R, Oberle AD, Bland LA, Aguero S, Arduino M, et al: Candida parapsilosis bloodstream infections in neonatal intensive care unit patients: epidemiologic and laboratory confirmation of a common source outbreak. Pediatr Infect Dis J. 1996, 15 (11): 998-1002. 10.1097/00006454-199611000-00013.
Article
CAS
PubMed
Google Scholar
Lupetti A, Tavanti A, Davini P, Ghelardi E, Corsini V, Merusi I, Boldrini A, Campa M, Senesi S: Horizontal transmission of Candida parapsilosis candidemia in a neonatal intensive care unit. J Clin Microbiol. 2002, 40 (7): 2363-2369. 10.1128/JCM.40.7.2363-2369.2002.
Article
PubMed
PubMed Central
Google Scholar
Diekema DJ, Messer SA, Hollis RJ, Wenzel RP, Pfaller MA: An outbreak of Candida parapsilosis prosthetic valve endocarditis. Diagn Microbiol Infect Dis. 1997, 29 (3): 147-153. 10.1016/S0732-8893(97)81804-4.
Article
CAS
PubMed
Google Scholar
van Asbeck EC, Huang YC, Markham AN, Clemons KV, Stevens DA: Candida parapsilosis fungemia in neonates: genotyping results suggest healthcare workers hands as source, and review of published studies. Mycopathologia. 2007, 164 (6): 287-293. 10.1007/s11046-007-9054-3.
Article
PubMed
Google Scholar
Lin D, Wu LC, Rinaldi MG, Lehmann PF: Three distinct genotypes within Candida parapsilosis from clinical sources. J Clin Microbiol. 1995, 33 (7): 1815-1821.
CAS
PubMed
PubMed Central
Google Scholar
Lott TJ, Kuykendall RJ, Welbel SF, Pramanik A, Lasker BA: Genomic heterogeneity in the yeast Candida parapsilosis. Curr Genet. 1993, 23 (5-6): 463-467. 10.1007/BF00312635.
Article
CAS
PubMed
Google Scholar
Tavanti A, Davidson AD, Gow NA, Maiden MC, Odds FC: Candida orthopsilosis and Candida metapsilos is spp. nov. to replace Candida parapsilosis Groups II and III. J Clin Microbiol. 2005, 43 (1): 284-292. 10.1128/JCM.43.1.284-292.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lasker BA, Butler G, Lott TJ: Molecular genotyping of Candida parapsilosis group I clinical isolates by analysis of polymorphic microsatellite markers. J Clin Microbiol. 2006, 44 (3): 750-759. 10.1128/JCM.44.3.750-759.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Asbeck EC, Clemons KV, Markham AN, Stevens DA: Correlation of restriction fragment length polymorphism genotyping with internal transcribed spacer sequence, randomly amplified polymorphic DNA and multilocus sequence groupings for Candida parapsilosis. Mycoses. 2009, 52 (6): 493-498. 10.1111/j.1439-0507.2008.01649.x.
Article
CAS
PubMed
Google Scholar
Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, et al: Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009, 459 (7247): 657-662. 10.1038/nature08064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Logue ME, Wong S, Wolfe KH, Butler G: A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot Cell. 2005, 4 (6): 1009-1017. 10.1128/EC.4.6.1009-1017.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sai S, Holland L, McGee CF, Lynch DB, Butler G: Evolution of mating within the Candida parapsilosis species group. Eukaryot Cell. 2011, 10: 578-587. 10.1128/EC.00276-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossignol T, Ding C, Guida A, d'Enfert C, Higgins DG, Butler G: Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot Cell. 2009, 8: 550-559. 10.1128/EC.00350-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitzpatrick DA, O'Gaora P, Byrne KP, Butler G: Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser. BMC Genomics. 2010, 11 (1): 290-
Article
PubMed
PubMed Central
Google Scholar
Rossignol T, Logue ME, Reynolds K, Grenon M, Lowndes NF, Butler G: Analysis of the transcriptional response of Candida parapsilosis following exposure to farnesol. Antimicrob Agents Chemother. 2007, 51: 2304-2312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wapinski I, Pfiffner J, French C, Socha A, Thompson DA, Regev A: Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Proc Natl Acad Sci USA. 2010, 107 (12): 5505-5510. 10.1073/pnas.0911905107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver BG, Song JL, Choiniere JH, White TC: cis-Acting Elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p. Eukaryot Cell. 2007, 6 (12): 2231-2239. 10.1128/EC.00331-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silver PM, Oliver BG, White TC: Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell. 2004, 3 (6): 1391-1397. 10.1128/EC.3.6.1391-1397.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva AP, Miranda IM, Guida A, Synnott J, Rocha R, Silva R, Amorim A, Pina-Vaz C, Butler G, Rodrigues AG: Transcriptional profiling of azole-resistant Candida parapsilosis strains. Antimicrob Agents Chemother. 2011
Google Scholar
Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009, 25 (9): 1105-1111. 10.1093/bioinformatics/btp120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics. 2000, 16 (10): 944-945. 10.1093/bioinformatics/16.10.944.
Article
CAS
PubMed
Google Scholar
Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25 (5): 955-964. 10.1093/nar/25.5.955.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitrovich QM, Tuch BB, Guthrie C, Johnson AD: Computational and experimental approaches double the number of known introns in the pathogenic yeast Candida albicans. Genome Res. 2007, 17 (4): 492-502. 10.1101/gr.6111907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruno VM, Wang Z, Marjani SL, Euskirchen GM, Martin J, Sherlock G, Snyder M: Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq. Genome Res. 2010, 20 (10): 1451-1458. 10.1101/gr.109553.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuch BB, Mitrovich QM, Homann OR, Hernday AD, Monighetti CK, De La Vega FM, Johnson AD: The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation. PLoS Genet. 2010, 6 (8): e1001070-10.1371/journal.pgen.1001070.
Article
PubMed
PubMed Central
Google Scholar
Sellam A, Hogues H, Askew C, Tebbji F, van Het Hoog M, Lavoie H, Kumamoto CA, Whiteway M, Nantel A: Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays. Genome Biol. 2010, 11 (7): R71-10.1186/gb-2010-11-7-r71.
Article
PubMed
PubMed Central
Google Scholar
Hong X, Scofield DG, Lynch M: Intron size, abundance, and distribution within untranslated regions of genes. Mol Biol Evol. 2006, 23 (12): 2392-2404. 10.1093/molbev/msl111.
Article
CAS
PubMed
Google Scholar
Roy SW, Penny D, Neafsey DE: Evolutionary conservation of UTR intron boundaries in Cryptococcus. Mol Biol Evol. 2007, 24 (5): 1140-1148. 10.1093/molbev/msm045.
Article
CAS
PubMed
Google Scholar
Mitrovich QM, Tuch BB, De La Vega FM, Guthrie C, Johnson AD: Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss. Science. 2010, 330 (6005): 838-841. 10.1126/science.1194554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, Aslett M, Barrell JF, Butler G, Citiulo F, et al: Comparative genomics of the fungal pathogens Candida dubliniensis and C. albicans. Genome Res. 2009, 19: 2231-2244. 10.1101/gr.097501.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, et al: Genome evolution in yeasts. Nature. 2004, 430 (6995): 35-44. 10.1038/nature02579.
Article
PubMed
Google Scholar
Zhang LY, Yang YF, Niu DK: Evaluation of models of the mechanisms underlying intron loss and gain in Aspergillus fungi. J Mol Evol. 2010, 71 (5-6): 364-373. 10.1007/s00239-010-9391-6.
Article
PubMed
Google Scholar
Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, et al: High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol. 2011
Google Scholar
Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B: Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact. 2009, 8: 29-10.1186/1475-2859-8-29.
Article
PubMed
PubMed Central
Google Scholar
De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N: Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol. 2009, 27 (6): 561-566. 10.1038/nbt.1544.
Article
CAS
PubMed
Google Scholar
Roy SW, Gilbert W: The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006, 7 (3): 211-221.
PubMed
Google Scholar
Roy SW, Irimia M: Mystery of intron gain: new data and new models. Trends Genet. 2009, 25 (2): 67-73. 10.1016/j.tig.2008.11.004.
Article
CAS
PubMed
Google Scholar
Stajich JE, Dietrich FS, Roy SW: Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol. 2007, 8 (10): R223-10.1186/gb-2007-8-10-r223.
Article
PubMed
PubMed Central
Google Scholar
Wilkerson MD, Ru Y, Brendel VP: Common introns within orthologous genes: software and application to plants. Brief Bioinform. 2009, 10 (6): 631-644. 10.1093/bib/bbp051.
Article
CAS
PubMed
Google Scholar
Nielsen CB, Friedman B, Birren B, Burge CB, Galagan JE: Patterns of intron gain and loss in fungi. PLoS Biol. 2004, 2 (12): e422-10.1371/journal.pbio.0020422.
Article
PubMed
PubMed Central
Google Scholar
Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M: Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog. 2009, 5 (10): e1000612-10.1371/journal.ppat.1000612.
Article
PubMed
PubMed Central
Google Scholar
Doedt T, Krishnamurthy S, Bockmuhl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF: APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell. 2004, 15 (7): 3167-3180. 10.1091/mbc.E03-11-0782.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giusani AD, Vinces M, Kumamoto CA: Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics. 2002, 160 (4): 1749-1753.
CAS
PubMed
PubMed Central
Google Scholar
Mulhern SM, Logue ME, Butler G: The Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryot Cell. 2006, 2001-2013. 5
Setiadi ER, Doedt T, Cottier F, Noffz C, Ernst JF: Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. J Mol Biol. 2006, 361 (3): 399-411. 10.1016/j.jmb.2006.06.040.
Article
CAS
PubMed
Google Scholar
Synnott JM, Guida A, Mulhern-Haughey S, Higgins DG, Butler G: Regulation of the hypoxic response in Candida albicans. Eukaryot Cell. 2010, 9 (11): 1734-1746. 10.1128/EC.00159-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonhomme J, Chauvel M, Goyard S, Roux P, Rossignol T, d'Enfert C: Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol Microbiol. 2011, 80 (4): 995-1013. 10.1111/j.1365-2958.2011.07626.x.
Article
CAS
PubMed
Google Scholar
Sellam A, Al-Niemi T, McInnerney K, Brumfield S, Nantel A, Suci PA: A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol. 2009, 9: 25-10.1186/1471-2180-9-25.
Article
PubMed
PubMed Central
Google Scholar
Stichternoth C, Ernst JF: Hypoxic adaptation by Efg1 regulates biofilm formation of Candida albicans. Appl Environ Microbiol. 2009, 3663-3672. 75
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010, 28 (5): 511-515. 10.1038/nbt.1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies BS, Rine J: A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics. 2006, 174 (1): 191-201. 10.1534/genetics.106.059964.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies BS, Wang HS, Rine J: Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms. Mol Cell Biol. 2005, 25 (16): 7375-7385. 10.1128/MCB.25.16.7375-7385.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hickman MJ, Winston F: Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol. 2007, 27 (21): 7414-7424. 10.1128/MCB.00887-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zitomer RS, Lowry CV: Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev. 1992, 56 (1): 1-11.
CAS
PubMed
PubMed Central
Google Scholar
Vik A, Rine J: Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol. 2001, 21 (19): 6395-6405. 10.1128/MCB.21.19.6395-6405.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacPherson S, Akache B, Weber S, De Deken X, Raymond M, Turcotte B: Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother. 2005, 49 (5): 1745-1752. 10.1128/AAC.49.5.1745-1752.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wapinski I, Pfiffner J, French C, Socha A, Thompson DA, Regev A: Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Proc Natl Acad Sci USA. 2010, 107 (12): 5505-5510. 10.1073/pnas.0911905107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S, Lin MF, Heiman DI, et al: Comparative Functional Genomics of the Fission Yeasts. Science. 2011, 332 (6032): 930-936. 10.1126/science.1203357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dennison PM, Ramsdale M, Manson CL, Brown AJ: Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet Biol. 2005, 42 (9): 737-748. 10.1016/j.fgb.2005.05.006.
Article
CAS
PubMed
Google Scholar
Smyth GK, Speed T: Normalization of cDNA microarray data. Methods. 2003, 31 (4): 265-273. 10.1016/S1046-2023(03)00155-5.
Article
CAS
PubMed
Google Scholar
Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A: Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009, 37 (18): e123-10.1093/nar/gkp596.
Article
PubMed
PubMed Central
Google Scholar
Weissenmayer BA, Prendergast JG, Lohan AJ, Loftus BJ: Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One. 2011, 6 (3): e17570-10.1371/journal.pone.0017570.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009, 25 (16): 2078-2079. 10.1093/bioinformatics/btp352.
Article
PubMed
PubMed Central
Google Scholar
Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D: Tablet--next generation sequence assembly visualization. Bioinformatics. 2010, 26 (3): 401-2. 10.1093/bioinformatics/btp666.
Article
CAS
PubMed
Google Scholar
Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010, 11: 94-10.1186/1471-2105-11-94.
Article
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995, 57 (1): 289-300.
Google Scholar
Notredame C, Higgins DG, Heringa J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000, 302 (1): 205-217. 10.1006/jmbi.2000.4042.
Article
CAS
PubMed
Google Scholar