McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, Plikaytis BD, Warnock DW: Trends in mortality due to invasive mycotic diseases in the United States, 1980-1997. Clin Infect Dis. 2001, 33: 641-647. 10.1086/322606.
Article
CAS
PubMed
Google Scholar
Alvez F, Figueras C, Roselló E: Emerging invasive fungal infections. An Pediatr (Barc). 2010, 73: 52.e1-52.e6. 10.1016/j.anpedi.2010.04.009.
Article
CAS
Google Scholar
Sable CA, Strohmaier KM, Chodakewitz JA: Advances in antifungal therapy. Annu Rev Med. 2008, 59: 361-379. 10.1146/annurev.med.59.062906.071602.
Article
CAS
PubMed
Google Scholar
Chapman SW, Sullivan DC, Cleary JD: In search of the holy grail of antifungal therapy. Trans Am Clin Climatol Assoc. 2008, 119: 197-215.
PubMed
PubMed Central
Google Scholar
Moen MD, Lyseng-Williamson KA, Scott LJ: Liposomal amphotericin B: a review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs. 2009, 69: 361-92. 10.2165/00003495-200969030-00010.
Article
CAS
PubMed
Google Scholar
Brüggemann RJ, Alffenaar JW, Blijlevens NM, Billaud EM, Kosterink JG, Verweij PE, Burger DM: Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis. 2009, 48: 1441-58. 10.1086/598327.
Article
PubMed
Google Scholar
Fera MT, La Camera E, De Sarro A: New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert review of anti-infective therapy. 2009, 7: 981-998. 10.1586/eri.09.67.
Article
CAS
PubMed
Google Scholar
Wong-Beringer A, Jacobs RA, Guglielmo BJ: Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis. 1998, 27: 603-18. 10.1086/514704.
Article
CAS
PubMed
Google Scholar
Olson JA, Adler-Moore JP, Jensen GM, Schwartz J, Dignani MC, Proffitt RT: Comparison of the physicochemical, antifungal, and toxic properties of two liposomal amphotericin B products. Antimicrob Agents Chemother. 2008, 52: 259-268. 10.1128/AAC.00870-07.
Article
CAS
PubMed
Google Scholar
Amaral AC, Bocca AL, Ribeiro AM, Nunes J, Peixoto DL, Simioni AR, Primo FL, Lacava ZG, Bentes R, Titze-de-Almeida R, Tedesco AC, Morais PC, Felipe MS: Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. J Antimicrob Chemother. 2009, 63: 526-533. 10.1093/jac/dkn539.
Article
CAS
PubMed
Google Scholar
Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL: How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010, 9: 203-14.
CAS
PubMed
Google Scholar
Jung K, Park J, Choi J, Park B, Kim S, Ahn K, Choi J, Choi D, Kang S, Lee YH: SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics. 2008, 9: 586-10.1186/1471-2164-9-586.
Article
PubMed
PubMed Central
Google Scholar
Janaki C, Joshi RR: Accelerating Comparative Genomics Using Parallel Computing. In Silico Biology. 2003, 3: 429-440.
CAS
PubMed
Google Scholar
White TA, Kell DB: Comparative genomic assessment of novel broad-spectrum targets for antibacterial drugs. Comp Funct Genomics. 2004, 5: 304-327. 10.1002/cfg.411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, Wang S, Spiro D, Ghedin E, Carlow CKS: Mining Predicted Essential Genes of Brugia malayi for Nematode Drug Targets. PLoS ONE. 2007, 2: e1189-10.1371/journal.pone.0001189.
Article
PubMed
PubMed Central
Google Scholar
Caffrey CR, Rohwer A, Oellien F, Marhöfer RJ, Braschi S, Oliveira G, McKerrow JH, Selzer PM: A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni. PLoS One. 2009, 4: e4413-10.1371/journal.pone.0004413.
Article
PubMed
PubMed Central
Google Scholar
Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Boone C, Bussey H: Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Molecular Microbiology. 2003, 50: 167-181. 10.1046/j.1365-2958.2003.03697.x.
Article
CAS
PubMed
Google Scholar
Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau1 A, Xin C, Bowman J, Becker J, Jiang B, Roemer T: Essential gene identification and drug target prioritization in Aspergillus fumigates. PLoS pathogens. 2007, 3: e24-10.1371/journal.ppat.0030024.
Article
PubMed
PubMed Central
Google Scholar
Buurman ET, Westwater C, Hube B, Brown AJ, Odds FC, Gow NA: Molecular analysis of CaMnt1p, a mannosyltransferase important for adhesion and virulence of Candida albicans. Proc Natl Acad Sci USA. 1998, 95: 7670-5. 10.1073/pnas.95.13.7670.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen-Pergakes KL, Kennedy MA, Lees ND, Barbuch R, Koegel C, Bard M: Sequencing, Disruption, and Characterization of the Candida albicans Sterol Methyltransferase (ERG6) Gene: Drug Susceptibility Studies in erg6 Mutants. Antimicrobial Agents and Chemotherapy. 1998, 42: 1160-1167.
CAS
PubMed
PubMed Central
Google Scholar
Felipe MS, Andrade RV, Arraes FB, Nicola AM, Maranhão AQ, Torres FA, Silva-Pereira I, Poças-Fonseca MJ, Campos EG, Moraes LM, Andrade PA, Tavares AH, Silva SS, Kyaw CM, Souza DP, Pereira M, Jesuíno RS, Andrade EV, Parente JA, Oliveira GS, Barbosa MS, Martins NF, Fachin AL, Cardoso RS, Passos GA, Almeida NF, Walter ME, Soares CM, Carvalho MJ, Brígido MM, PbGenome Network: Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem. 2005, 280: 24706-24714. 10.1074/jbc.M500625200.
Article
PubMed
Google Scholar
Williams CH, Arscott LD, Muller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH: Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem. 2000, 267: 6110-6117. 10.1046/j.1432-1327.2000.01702.x.
Article
CAS
PubMed
Google Scholar
Arnér ES, Holmgren A: Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000, 267: 6102-6109. 10.1046/j.1432-1327.2000.01701.x.
Article
PubMed
Google Scholar
Missall TA, Lodge JK: Thioredoxin reductase is essential for viability in the fungal pathogen Cryptococcus neoformans. Eukaryot Cell. 2005, 4: 487-9. 10.1128/EC.4.2.487-489.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Muller S: Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem. 2002, 277: 25970-25975. 10.1074/jbc.M203539200.
Article
CAS
PubMed
Google Scholar
Uziel O, Borovok I, Schreiber R, Cohen G, Aharonowitz Y: Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J Bacteriol. 2004, 186: 326-334. 10.1128/JB.186.2.326-334.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machado AK, Morgan BA, Merrill GF: Thioredoxin reductase-dependent inhibition of MCB cell cycle box activity in Saccharomyces cerevisiae. J Biol Chem. 1997, 272: 17045-17054. 10.1074/jbc.272.27.17045.
Article
CAS
PubMed
Google Scholar
Pearson GD, Merrill GF: Deletion of the Saccharomyces cerevisiae TRR1 gene encoding thioredoxin reductase inhibits p53-dependent reporter gene expression. J Biol Chem. 1998, 273: 5431-5434. 10.1074/jbc.273.10.5431.
Article
CAS
PubMed
Google Scholar
Peñalva MA, Arst HN: Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiology and Molecular Biology Reviews. 2002, 66: 426-446. 10.1128/MMBR.66.3.426-446.2002.
Article
PubMed
PubMed Central
Google Scholar
Herranz S, Rodríguez JM, Bussink HJ, Sánchez-Ferrero JC, Arst HN, Peñalva MA, Vincent O: Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci USA. 2005, 102: 12141-12146. 10.1073/pnas.0504776102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis D, Edwards JE, Mitchell AP, Ibrahim AS: Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun. 2000, 68: 5953-5959. 10.1128/IAI.68.10.5953-5959.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lussier M, Sdicu AM, Ketela T, Bussey H: Localization and targeting of the Saccharomyces cerevisiae Kre2p/Mnt1p alpha 1,2-mannosyltransferase to a medial-Golgi compartment. J Cell Biol. 1995, 131: 913-927. 10.1083/jcb.131.4.913.
Article
CAS
PubMed
Google Scholar
Häusler A, Ballou L, Ballou CE, Robbins PW: Yeast glycoprotein biosynthesis: MNT1 encodes an alpha-1,2-mannosyltransferase involved in O-glycosylation. Proc Natl Acad Sci USA. 1992, 89: 6846-6850. 10.1073/pnas.89.15.6846.
Article
PubMed
PubMed Central
Google Scholar
Hill K, Boone C, Goebl M, Puccia R, Sdicu AM, Bussey H: Yeast KRE2 Defines a New Gene Family Encoding Probable Secretory Proteins, and Is Required for the Correct N-Glycosylation of Proteins. Genetics. 1992, 130: 273-283.
CAS
PubMed
PubMed Central
Google Scholar
Lussier M, Sdicu AM, Bussereau F, Jacquet M, Bussey H: The Ktr1p, Ktr3p, and Kre2p/Mnt1p mannosyltransferases participate in the elaboration of yeast O- and N-linked carbohydrate chains. The Journal of Biological Chemistry. 1997, 272: 15527-15531. 10.1074/jbc.272.24.15527.
Article
CAS
PubMed
Google Scholar
Wagener J, Echtenacher B, Rohde M, Kotz A, Krappmann S, Heesemann J, Ebel F: The putative alpha-1,2-mannosyltransferase AfMnt1 of the opportunistic fungal pathogen Aspergillus fumigatus is required for cell wall stability and full virulence. Eukaryot Cell. 2008, 7: 1661-1673. 10.1128/EC.00221-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munro CA, Bates S, Buurman ET, Hughes HB, Maccallum DM, Bertram G, Atrih A, Ferguson MA, Bain JM, Brand A, Hamilton S, Westwater C, Thomson LM, Brown AJ, Odds FC, Gow NA: Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem. 2005, 280: 1051-1060. 10.1074/jbc.M411413200.
Article
CAS
PubMed
Google Scholar
McCammon MT, Hartmann Ma, Bottema CD, Parks LW: Sterol methylation in Saccharomyces cerevisiae. Journal of bacteriology. 1984, 157: 475-483.
CAS
PubMed
PubMed Central
Google Scholar
Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S, Kohlwein SD: The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol Cell Proteomics. 2005, 4: 662-672. 10.1074/mcp.M400123-MCP200.
Article
CAS
PubMed
Google Scholar
Nes WD, Janssen GG, Bergenstrahle A: Structural requirements for transformation of substrates by the (S)-adenosyl-L-methionine:delta 24(25)-sterol methyl transferase. J Biol Chem. 1991, 266: 15202-15212.
CAS
PubMed
Google Scholar
Gaber RF, Copple DM, Kennedy BK, Vidal M, Bard M: The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Molecular and Cellular Biology. 1989, 9: 3447-3456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zweytick D, Leitner E, Kohlwein SD, Yu C, Rothblatt J, Daum G: Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. Eur J Biochem. 2000, 267: 1075-1082. 10.1046/j.1432-1327.2000.01103.x.
Article
CAS
PubMed
Google Scholar
Young LY, Hull CM, Heitman J: Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob Agents Chemother. 2003, 47: 2717-2724. 10.1128/AAC.47.9.2717-2724.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veine DM, Mulrooney SB, Wang PF, Williams CH: Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin. Protein Sci. 1998, 7: 1441-50. 10.1002/pro.5560070621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Bao R, Zhang Y, Yu J, Zhou CZ, Chen Y: Crystal structure of Saccharomyces cerevisiae cytoplasmic thioredoxin reductase Trr1 reveals the structural basis for species-specific recognition of thioredoxin. Biochim Biophys Acta. 2009, 1794: 124-128.
Article
CAS
PubMed
Google Scholar
Thomson LM, Bates S, Yamazaki S, Arisawa M, Aoki Y, Gow NA: Functional characterization of the Candida albicans MNT1 mannosyltransferase expressed heterologously in Pichia pastoris. J Biol Chem. 2000, 275: 18933-8. 10.1074/jbc.M909699199.
Article
CAS
PubMed
Google Scholar
Lobsanov YD, Romero PA, Sleno B, Yu B, Yip P, Herscovics A, Howell PL: Structure of Kre2p/Mnt1p: a yeast alpha1,2-mannosyltransferase involved in mannoprotein biosynthesis. J Biol Chem. 2004, 279: 17921-17931. 10.1074/jbc.M312720200.
Article
CAS
PubMed
Google Scholar
Nes WD, McCourt BS, Zhou W, Ma J, Marshall JA, Peek LA, Brennan M: Overexpression, purification, and stereochemical studies of the recombinant (S)-adenosyl-L-methionine: D24(25)- to D24(28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Arch Biochem Biophys. 1998, 353: 297-311. 10.1006/abbi.1998.0665.
Article
CAS
PubMed
Google Scholar
Nes WD, Marshall JA, Jia Z, Jaradat TT, Song Z, Jayasimha P: Active site mapping and substrate channeling in the sterol methyltransferase pathway. J Biol Chem. 2002, 277: 42549-56. 10.1074/jbc.M204223200.
Article
CAS
PubMed
Google Scholar
Nes WD, McCourt BS, Marshall JA, Ma J, Dennis AL, Lopez M, Li H, He L: Site-directed mutagenesis of the sterol methyl transferase active site from Saccharomyces cerevisiae results in formation of novel 24-ethyl sterols. J Org Chem. 1999, 64: 1535-1542. 10.1021/jo9819943.
Article
CAS
PubMed
Google Scholar
Nes WD: Enzyme redesign and interactions of substrate analogues with sterol methyltransferase to understand phytosterol diversity, reaction mechanism and the nature of the active site. Biochem Soc Trans. 2005, 33: 1189-1196. 10.1042/BST20051189.
Article
CAS
PubMed
Google Scholar
Ganapathy K, Jones CW, Stephens CM, Vatsyayan R, Marshall JA, Nes WD: Molecular probing of the Saccharomyces cerevisiae sterol 24-C methyltransferase reveals multiple amino acid residues involved with C2-transfer activity. Biochim Biophys Acta. 2008, 1781: 344-351.
Article
CAS
PubMed
Google Scholar
Teixeira MM, Theodoro RC, de Carvalho MJ, Fernandes L, Paes HC, Hahn RC, Mendoza L, Bagagli E, San-Blas G, Felipe MS: Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Mol Phylogenet Evol. 2009, 52: 273-83. 10.1016/j.ympev.2009.04.005.
Article
PubMed
Google Scholar
Cavasotto CN, Phatak SS: Homology modeling in drug discovery: current trends and applications. Drug Discov Today. 2009, 14: 676-683. 10.1016/j.drudis.2009.04.006.
Article
CAS
PubMed
Google Scholar
Marshall GR: Introduction to cheminformatics in drug discovery - A personal view. Chemioinformatics in drug discovery. Edited by: Tudor I. 2004, Oprea, Weinhein: WILEY-VHC, 23: ISBN: 3-527-30753-2
Google Scholar
Dai S, Saarinen M, Ramaswamy S, Meyer Y, Jacquot JP, Eklund H: Crystal Structure of Arabidopsis thaliana NADPH Dependent Thioredoxin Reductase at 2.5 Å Resolution. J Mol Biol. 1996, 264: 1044-1057. 10.1006/jmbi.1996.0695.
Article
CAS
PubMed
Google Scholar
Oliveira MA, Discola KF, Alves SV, Medrano FJ, Guimarães BG, Netto LES: Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system. Biochemistry. 2010, 49: 3317-3326. 10.1021/bi901962p.
Article
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-80. 10.1093/nar/22.22.4673.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999, 41: 95-98.
CAS
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19: 1572-4. 10.1093/bioinformatics/btg180.
Article
CAS
PubMed
Google Scholar
Jones DT, Taylor WR, Thornton JM: The Rapid Generation of Mutation Data Matrices from Protein Sequences. Comput Applic Biosci. 1992, 8: 275-282.
CAS
Google Scholar