Kim VN, Han J, Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009, 10: 126-139. 10.1038/nrm2632.
Article
CAS
PubMed
Google Scholar
Chekulaeva M, Filipowicz W: Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol. 2009, 21: 452-460. 10.1016/j.ceb.2009.04.009.
Article
CAS
PubMed
Google Scholar
Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW: Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol. 2010, 17: 173-179. 10.1038/nsmb.1745.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schnall-Levin M, Zhao Y, Perrimon N, Berger B: Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3' UTRs. Proc Natl Acad Sci USA. 2010, 107: 15751-15756. 10.1073/pnas.1006172107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Friedman RC, Farh KKH, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19: 92-105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM: An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA. 2004, 101: 9740-9744. 10.1073/pnas.0403293101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RHA: MicroRNA expression in zebrafish embryonic development. Science. 2005, 309: 310-311. 10.1126/science.1114519.
Article
CAS
PubMed
Google Scholar
Martinez NJ, Ow MC, Reece-Hoyes JS, Barrasa MI, Ambros VR, Walhout AJM: Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 2008, 18: 2005-2015. 10.1101/gr.083055.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Newman MA, Hammond SM: Emerging paradigms of regulated microRNA processing. Genes Dev. 2010, 24: 1086-1092. 10.1101/gad.1919710.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004, 303: 83-86. 10.1126/science.1091903.
Article
CAS
PubMed
Google Scholar
Esau C, Kang XL, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun YQ, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R: MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004, 279: 52361-52365. 10.1074/jbc.C400438200.
Article
CAS
PubMed
Google Scholar
Zhao Y, Samal E, Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005, 436: 214-220. 10.1038/nature03817.
Article
CAS
PubMed
Google Scholar
Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma XS, MacDonald PE, Pfeffer B, Tuschl T, Rajewsky N, Rorsman P, Stoffel M: A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004, 432: 226-230. 10.1038/nature03076.
Article
CAS
PubMed
Google Scholar
Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O: A cellular microRNA mediates antiviral defense in human cells. Science. 2005, 308: 557-560. 10.1126/science.1108784.
Article
CAS
PubMed
Google Scholar
He L, He XY, Lim LP, De Stanchina E, Xuan ZY, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen CF, Lowe SW, Cleary MA, Hannon GJ: A microRNA component of the p53 tumour suppressor network. Nature. 2007, 447: 1130-U1116. 10.1038/nature05939.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S: A microRNA targeting Dicer for metastasis control. Cell. 2010, 141: 1195-1207. 10.1016/j.cell.2010.05.017.
Article
CAS
PubMed
Google Scholar
Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. 10.1016/0092-8674(93)90529-Y.
Article
CAS
PubMed
Google Scholar
Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993, 75: 855-862. 10.1016/0092-8674(93)90530-4.
Article
CAS
PubMed
Google Scholar
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000, 403: 901-906. 10.1038/35002607.
Article
CAS
PubMed
Google Scholar
Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V: The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell. 2005, 9: 403-414. 10.1016/j.devcel.2005.07.009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Johnston RJ, Hobert O: A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003, 426: 845-849. 10.1038/nature02255.
Article
CAS
PubMed
Google Scholar
Chang S, Johnston RJ, Frokjaer-Jensen C, Lockery S, Hobert O: MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature. 2004, 430: 785-789. 10.1038/nature02752.
Article
CAS
PubMed
Google Scholar
Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR: Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. Plos Genetics. 2007, 3: 2395-2403.
Article
CAS
Google Scholar
Alvarez-Saavedra E, Horvitz HR: Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol. 2010, 20: 367-373. 10.1016/j.cub.2009.12.051.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shaw WR, Armisen J, Lehrbach NJ, Miska EA: The conserved miR-51 microRNA family is redundantly required for embryonic development and pharynx attachment in Caenorhabditis elegans. Genetics. 2010, 185: 897-905. 10.1534/genetics.110.117515.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brenner JL, Jasiewicz KL, Fahley AF, Kemp BJ, Abbott AL: Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr Biol. 2010, 20: 1321-1325. 10.1016/j.cub.2010.05.062.
Article
PubMed Central
CAS
PubMed
Google Scholar
Simon DJ, Madison JM, Conery AL, Thompson-Peer KL, Soskis M, Ruvkun GB, Kaplan JM, Kim JK: The MicroRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell. 2008, 133: 903-915. 10.1016/j.cell.2008.04.035.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ottesen EA, Duke BOL, Karam M, Behbehani K: Strategies and tools for the control/elimination of lymphatic filariasis. Bull WHO. 1997, 75: 491-503.
PubMed Central
CAS
PubMed
Google Scholar
Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J: Helminth infections: the great neglected tropical diseases. J Clin Investig. 2008, 118: 1311-1321. 10.1172/JCI34261.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK: A molecular evolutionary framework for the phylum Nematoda. Nature. 1998, 392: 71-75. 10.1038/32160.
Article
CAS
PubMed
Google Scholar
Ghedin E, Wang SL, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CKS, Crawford MJ, Daub J, et al, et al: Draft genome of the filarial nematode parasite Brugia malayi. Science. 2007, 317: 1756-1760. 10.1126/science.1145406.
Article
PubMed Central
CAS
PubMed
Google Scholar
Helminth genomes - data download. [http://www.sanger.ac.uk/resources/downloads/helminths/]
Ghildiyal M, Zamore PD: Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009, 10: 94-108. 10.1038/nrg2504.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP: Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell. 2006, 127: 1193-1207. 10.1016/j.cell.2006.10.040.
Article
CAS
PubMed
Google Scholar
Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008, 18: 610-621. 10.1101/gr.7179508.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lau NC, Robine N, Martin R, Chung WJ, Niki Y, Berezikov E, Lai EC: Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res. 2009, 19: 1776-1785. 10.1101/gr.094896.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fong MY, Thanabalan A, Muslim A, Lau YL, Sivanandam S, Mahmud R: Inferring the phylogenetic position of Brugia pahangi using 18S ribosomal RNA (18S rRNA) gene sequence. Tropical Biomedicine. 2008, 25: 87-92.
CAS
PubMed
Google Scholar
Gomez-Escobar N, Lewis E, Maizels RM: A novel member of the transforming growth factor-beta (TGF-beta) superfamily from the filarial nematodes Brugia malayi and B. pahangi. Exp Parasitol. 1998, 88: 200-209. 10.1006/expr.1998.4248.
Article
CAS
PubMed
Google Scholar
Casiraghi M, Anderson TJC, Bandi C, Bazzocchi C, Genchi C: A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology. 2001, 122: 93-103. 10.1017/S0031182000007149.
Article
CAS
PubMed
Google Scholar
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Cheetham RK, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu XH, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, et al: Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008, 456: 53-59. 10.1038/nature07517.
Article
PubMed Central
CAS
PubMed
Google Scholar
Friedlander MR, Adamidi C, Han T, Lebedeva S, Isenbarger TA, Hirst M, Marra M, Nusbaum C, Leee WL, Jenkin JC, Alvarado AS, Kim JK, Rajewsky N: High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci USA. 2009, 106: 11546-11551. 10.1073/pnas.0905222106.
Article
PubMed Central
PubMed
Google Scholar
Kato M, de Lencastre A, Pincus Z, Slack FJ: Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biology. 2009, 10:
Google Scholar
Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N: Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008, 26: 407-415. 10.1038/nbt1394.
Article
PubMed
Google Scholar
Chen X, Li QB, Wang J, Guo X, Jiang XR, Ren ZJ, Weng CY, Sun GX, Wang XQ, Liu YP, Ma LJ, Chen JY, Wang J, Zen K, Zhang JF, Zhang CY: Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biology. 2009, 10:
Google Scholar
Huang J, Hao P, Chen H, Hu W, Yan Q, Liu F, Han ZG: Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. Plos One. 2009, 4:
Google Scholar
Poole CB, Davis PJ, Jin JM, McReynolds LA: Cloning and bioinformatic identification of small RNAs in the filarial nematode, Brugia malayi. Molecular and Biochemical Parasitology. 2010, 169: 87-94. 10.1016/j.molbiopara.2009.10.004.
Article
CAS
PubMed
Google Scholar
Tyagi S, Vaz C, Gupta V, Bhatia R, Maheshwari S, Srinivasan A, Bhattacharya A: CID-miRNA: A web server for prediction of novel miRNA precursors in human genome. Biochem Biophys Res Commun. 2008, 372: 831-834. 10.1016/j.bbrc.2008.05.134.
Article
CAS
PubMed
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36: D154-D158. 10.1093/nar/gkn221.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P: Fast folding and comparison of RNA secondary structures. Monatshefte Fur Chemie. 1994, 125: 167-188. 10.1007/BF00818163.
Article
CAS
Google Scholar
Ibanez-Ventoso C, Yang MC, Guo SZ, Robins H, Padgett RW, Driscoll M: Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell. 2006, 5: 235-246. 10.1111/j.1474-9726.2006.00210.x.
Article
CAS
PubMed
Google Scholar
Pearson WR: Searching protein-sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics. 1991, 11: 635-650. 10.1016/0888-7543(91)90071-L.
Article
CAS
PubMed
Google Scholar
de Wit E, Linsen SEV, Cuppen E, Berezikov E: Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res. 2009, 19: 2064-2074. 10.1101/gr.093781.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE: Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res. 2011, 21: 1462-1477. 10.1101/gr.121426.111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tang GQ, Maxwell ES: Xenopus microRNA genes are predominantly located within introns and are diffferentially expressed in adult frog tissues via post-transcriptional regulation. Genome Res. 2008, 18: 104-112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Scott AL, Ghedin E: The genome of Brugia malayi - All worms are not created equal. Parasitol Int. 2009, 58: 6-11. 10.1016/j.parint.2008.09.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Griffiths-Jones S, Hui JHL, Marco A, Ronshaugen M: MicroRNA evolution by arm switching. EMBO Rep. 2011, 12: 172-177. 10.1038/embor.2010.191.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roush S, Slack FJ: The let-7 family of microRNAs. Trends Cell Biol. 2008, 18: 505-516. 10.1016/j.tcb.2008.07.007.
Article
CAS
PubMed
Google Scholar
Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U, Marks DS, Sander C, Tuschl T, Gaul U: Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell. 2005, 121: 1097-1108. 10.1016/j.cell.2005.04.016.
Article
CAS
PubMed
Google Scholar
de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ: MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol. 2010, 20: 2159-2168. 10.1016/j.cub.2010.11.015.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thomson T, Lin HF: The biogenesis and function of PIWI Proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009, 25: 355-376. 10.1146/annurev.cellbio.24.110707.175327.
Article
PubMed Central
CAS
PubMed
Google Scholar
Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthewss N, Berezilkov E, Ketting RF, Tavare S, Miska EA: Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell. 2008, 31: 79-90. 10.1016/j.molcel.2008.06.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP: Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008, 455: 1193-U1115. 10.1038/nature07415.
Article
CAS
PubMed
Google Scholar
Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ: The deep evolution of metazoan microRNAs. Evolution & Development. 2009, 11: 50-68.
Article
CAS
Google Scholar
Kariuki MM, Hearne LB, Beerntsen BT: Differential transcript expression between the microfilariae of the filarial nematodes, Brugia malayi and B. pahangi. BMC Genomics. 2010, 11:
Google Scholar
Laing R, Hunt M, Protasio AV, Saunders G, Mungall K, Laing S, Jackson F, Quail M, Beech R, Berriman M, Gilleard JS: Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans. PLoS One. 2011, 6: e23216-10.1371/journal.pone.0023216.
Article
PubMed Central
CAS
PubMed
Google Scholar
Whitton C, Daub J, Quail M, Hall N, Foster J, Ware J, Ganatra M, Slatko B, Barrell B, Blaxter M: A genome sequence survey of the filarial nematode Brugia malayi: repeats, gene discovery, and comparative genomics. Molecular and Biochemical Parasitology. 2004, 137: 215-227. 10.1016/j.molbiopara.2004.05.013.
Article
PubMed
Google Scholar
Dalzell JJ, McVeigh P, Warnock ND, Mitreva M, Bird DM, Abad P, Fleming CC, Day TA, Mousley A, Marks NJ, Maule AG: RNAi effector diversity in nematodes. Plos Neglected Tropical Diseases. 2011, 5: e1176-10.1371/journal.pntd.0001176.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buckley JJC, Edeson JFB: On the adult morphology of Wuchereria sp. (malayi?) from a monkey (Macaca irus) and from cats in Malaya, and on Wuchereria pahangi n. sp. from a dog and a cat. Jour Helminthol. 1956, 30: 1-20. 10.1017/S0022149X00032922.
Article
CAS
Google Scholar
Devaney E, Jecock RM: The expression of the Mr 30000 antigen in the third stage larvae of Brugia pahangi. Parasite Immunology. 1991, 13: 75-87. 10.1111/j.1365-3024.1991.tb00264.x.
Article
CAS
PubMed
Google Scholar
Sanger Institute FTP site. [ftp://ftp.sanger.ac.uk/pub/pathogens/Brugia/malayi/REF]
NCBI Nucleotide. [http://www.ncbi.nlm.nih.gov/nuccore?term=DS236884:DS264093[PACC]]
Sanger Institute H. contortus contigs. [ftp://ftp.sanger.ac.uk/pub/pathogens/Haemonchus/contortus/genome/contigs]
Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25: 955-964. 10.1093/nar/25.5.955.
Article
PubMed Central
CAS
PubMed
Google Scholar
tRNAscan-SE. [http://lowelab.ucsc.edu/tRNAscan-SE/]
NCBI. [http://www.ncbi.nlm.nih.gov/]
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO: SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35: 7188-7196. 10.1093/nar/gkm864.
Article
PubMed Central
CAS
PubMed
Google Scholar
SILVA. [http://www.arb-silva.de/]
Sanger Institute Rfam. [ftp://ftp.sanger.ac.uk/pub/databases/Rfam/CURRENT]
WormBase FTP. [ftp://ftp.wormbase.org/pub/wormbase/releases/current-www.wormbase.org-release/species/c_elegans/]
Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T: The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol. 2006, 7:
Google Scholar
miRDeep. [http://www.mdc-berlin.de/en/research/research_teams/systems_biology_of_gene_regulatory_elements/projects/miRDeep/index.html]
MIREAP. [http://sourceforge.net/projects/mireap/]
Vienna RNA Package. [http://www.tbi.univie.ac.at/~ivo/RNA/]
CIDmiRNA. [http://mirna.jnu.ac.in/cidmirna]
Stark MS, Tyagi S, Nancarrow DJ, Boyle GM, Cook AL, Whiteman DC, Parsons PG, Schmidt C, Sturm RA, Hayward NK: Characterization of the melanoma miRNAome by deep sequencing. Plos One. 2010, 5:
Google Scholar
Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R, Bhattacharya A: Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics. 2010, 11:
Google Scholar
miRBase Release 15. [ftp://mirbase.org/pub/mirbase/15/]
Kaufman EJ, Miska EA: The microRNAs of Caenorhabditis elegans. Semin Cell Dev Biol. 2010, 21: 728-737. 10.1016/j.semcdb.2010.07.001.
Article
CAS
PubMed
Google Scholar