Zheng M, Barrera LO, Ren B, Wu YN: ChIP-chip: Data, Model, and Analysis. Biometrics. 2007, 63 (3): 787-796. 10.1111/j.1541-0420.2007.00768.x.
Article
CAS
PubMed
Google Scholar
Mohn F, Weber M, Schübeler D, Roloff T-C: Methylated DNA Immunoprecipitation (MeDIP). Methods Mol Biol. 2009, 507: 55-64. 10.1007/978-1-59745-522-0_5.
Article
CAS
PubMed
Google Scholar
Ordway JM, Bedell JA, Citek RW, Nunberg A, Garrido A, Kendall R, Stevens JR, Cao D, Doerge RW, Korshunova Y, et al: Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis. 2006, 27 (12): 2409-2423. 10.1093/carcin/bgl161.
Article
CAS
PubMed
Google Scholar
Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, Cigudosa JC, Huang TH-M, Esteller M: Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. The EMBO journal. 2003, 22 (23): 6335-6345. 10.1093/emboj/cdg604.
Article
PubMed Central
CAS
PubMed
Google Scholar
Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007, 8 (4): 286-298. 10.1038/nrg2005.
Article
CAS
PubMed
Google Scholar
Movassagh M, Choy M-K, Goddard M, Bennett MR, Down TA, Foo RSY: Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PloS one. 2010, 5 (1): e8564-10.1371/journal.pone.0008564.
Article
PubMed Central
PubMed
Google Scholar
Mariman ECM: Epigenetic manifestations in diet-related disorders. Journal of nutrigenetics and nutrigenomics. 2008, 1 (5): 232-239. 10.1159/000151237.
Article
CAS
PubMed
Google Scholar
Tsankova N, Renthal W, Kumar A, Nestler EJ: Epigenetic regulation in psychiatric disorders. Nature reviews Neuroscience. 2007, 8 (5): 355-367.
Article
CAS
PubMed
Google Scholar
Aryee MJ, Wu Z, Ladd-Acosta C, Herb B, Feinberg AP, Yegnasubramanian S, Irizarry RA: Accurate genome-scale percentage DNA methylation estimates from microarray data. Biostatistics (Oxford, England). 2011, 12 (2): 197-210.
Article
Google Scholar
Johannes F, Wardenaar R, Colomé-Tatché M, Mousson F, de Graaf P, Mokry M, Guryev V, Timmers HTM, Cuppen E, Jansen RC: Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq. Bioinformatics (Oxford, England). 2010, 26 (8): 1000-1006. 10.1093/bioinformatics/btq087.
Article
CAS
Google Scholar
Scacheri PC, Crawford GE, Davis S: Statistics for ChIP-chip and DNase hypersensitivity experiments on NimbleGen microarrays. Methods Enzymol. 2006, 411: 270-282.
Article
CAS
PubMed
Google Scholar
Yang YH, Dudoit S, Luu P: Normalization for cDNA microarray data. Optical Technologies and Informatics. 2001, 4266: 141-152.
Article
CAS
Google Scholar
Song JS, Johnson WE, Zhu X, Zhang X, Li W, Manrai AK, Liu JS, Chen R, Liu XS: Model-based analysis of two-color microarrays (MA2C). Genome Biol. 2007, 8: R178-10.1186/gb-2007-8-8-r178.
Article
PubMed Central
PubMed
Google Scholar
Lu R, Lee G-C, Shultz M, Dardick C, Jung K, Phetsom J, Jia Y, Rice RH, Goldberg Z, Schnable PS, et al: Assessing probe-specific dye and slide biases in two-color microarray data. BMC Bioinformatics. 2008, 9: 314-10.1186/1471-2105-9-314.
Article
PubMed Central
PubMed
Google Scholar
Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F: A Model-Based Background Adjustment for Oligonucleotide Expression Microarrays. Journal of the American Statistical Association. 2004, 99: 909-917. 10.1198/016214504000000683.
Article
Google Scholar
Smyth GK, Speed T: Normalization of cDNA microarray data. Methods. 2003, 31 (4): 265-273. 10.1016/S1046-2023(03)00155-5.
Article
CAS
PubMed
Google Scholar
Kepler TB, Crosby L, Morgan KT: Normalization and analysis of DNA microarray data by self-consistency and local regression. Genome Biol. 2002, 3 (7): RESEARCH0037
Google Scholar
Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HBr, Saxild H-H, Nielsen C, Brunak Sr, Knudsen S: A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome biology. 2002, 3 (9): research0048
Google Scholar
Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide microarray data based on variance and bias. Bioinformatics (Oxford, England). 2003, 19 (2): 185-193. 10.1093/bioinformatics/19.2.185.
Article
CAS
Google Scholar
Dudoit S, Yang YH, Callow MJ: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray. Statistica Sinica. 2002, 12: 111-139.
Google Scholar
Benoukraf T, Cauchy P, Fenouil R, Jeanniard A, Koch F, Jaeger Sb, Thieffry D, Imbert J, Andrau J-C, Spicuglia S, Ferrier P: CoCAS: a ChIP-on-chip analysis suite. Bioinformatics (Oxford, England). 2009, 25 (7): 954-955. 10.1093/bioinformatics/btp075.
Article
CAS
Google Scholar
Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M: Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics (Oxford, England). 2002, 18 (Suppl 1): S96-104. 10.1093/bioinformatics/18.suppl_1.S96.
Article
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: open software development for computational biology and bioinformatics. Genome biology. 2004, 5 (10): R80-10.1186/gb-2004-5-10-r80.
Article
PubMed Central
PubMed
Google Scholar
Peng S, Alekseyenko AA, Larschan E, Kuroda MI, Park PJ: Normalization and experimental design for ChIP-chip data. BMC bioinformatics. 2007, 8: 219-10.1186/1471-2105-8-219.
Article
PubMed Central
PubMed
Google Scholar
Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, et al: Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006, 38 (11): 1289-1297. 10.1038/ng1901.
Article
CAS
PubMed
Google Scholar
Romano A, Adriaens M, Kuenen S, Delvoux B, Dunselman G, Evelo C, Groothuis P: Identification of novel ER-alpha target genes in breast cancer cells: gene- and cell-selective co-regulator recruitment at target promoters determines the response to 17beta-estradiol and tamoxifen. Mol Cell Endocrinol. 2009, 314 (1): 90-100.
Article
PubMed
Google Scholar
Hayashi H, Nagae G, Tsutsumi S, Kaneshiro K, Kozaki T, Kaneda A, Sugisaki H, Aburatani H: High-resolution mapping of DNA methylation in human genome using oligonucleotide tiling array. Human genetics. 2007, 120 (5): 701-711.
Article
CAS
PubMed
Google Scholar
Wu H, Tao J, Chen PJ, Shahab A, Ge W, Hart RP, Ruan X, Ruan Y, Sun YE: Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2010, 107 (42): 18161-18166. 10.1073/pnas.1005595107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic acids research. 2002, 30 (4): e15-10.1093/nar/30.4.e15.
Article
PubMed Central
PubMed
Google Scholar
Schadt EE, Li C, Ellis B, Wong WH: Feature extraction and normalization algorithms for high-density oligonucleotide gene expression microarray data. Journal of cellular biochemistry Supplement. 2001, 120-125. Suppl 37
Wilson AS, Power BE, Molloy PL: DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007, 1775 (1): 138-162.
CAS
PubMed
Google Scholar
Zhao Y, Li M-C, Simon R: An adaptive method for cDNA microarray normalization. BMC bioinformatics. 2005, 6: 28-10.1186/1471-2105-6-28.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pelizzola M, Koga Y, Urban AE, Krauthammer M, Weissman S, Halaban R, Molinaro AM: MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome research. 2008, 18 (10): 1652-1659. 10.1101/gr.080721.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Gräf S, Johnson N, Herrero J, Tomazou EM: A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol. 2008, 26 (7): 779-785. 10.1038/nbt1414.
Article
PubMed Central
CAS
PubMed
Google Scholar
McKay JA, Adriaens ME, Ford D, Relton CL, Evelo CTA, Mathers JC: Bioinformatic interrogation of expression microarray data to identify nutritionally regulated genes potentially modulated by DNA methylation. Genes Nutr. 2008, 3 (3-4): 167-171. 10.1007/s12263-008-0095-0.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kauffmann A, Gentleman R, Huber W: arrayQualityMetrics--a bioconductor package for quality assessment of microarray data. Bioinformatics (Oxford, England). 2009, 25 (3): 415-416. 10.1093/bioinformatics/btn647.
Article
CAS
Google Scholar
Sural TH, Peng S, Li B, Workman JL, Park PJ, Kuroda MI: The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster × chromosome. Nature structural & molecular biology. 2008, 15 (12): 1318-1325. 10.1038/nsmb.1520.
Article
CAS
Google Scholar
Gelbart ME, Larschan E, Peng S, Park PJ, Kuroda MI: Drosophila MSL complex globally acetylates H4K16 on the male × chromosome for dosage compensation. Nature structural & molecular biology. 2009, 16 (8): 825-832. 10.1038/nsmb.1644.
Article
CAS
Google Scholar
Smyth GK, Speed TP: Normalization of cDNA microarray data. Methods. 2003, 31: 265-273. 10.1016/S1046-2023(03)00155-5.
Article
CAS
PubMed
Google Scholar
Toedling J, Sklyar O, Huber W: Ringo - an R/Bioconductor package for analyzing ChIP-chip readouts. BMC Bioinformatics. 2007, 8 (1): 221-10.1186/1471-2105-8-221.
Article
PubMed Central
PubMed
Google Scholar