Chesebro B: Introduction to the transmissible spongiform encephalopathies or prion diseases. Br Med Bull. 2003, 66: 1-20. 10.1093/bmb/66.1.1.
Article
CAS
PubMed
Google Scholar
Prusiner SB: Molecular biology of prion diseases. Science (New York, NY). 1991, 252 (5012): 1515-1522. 10.1126/science.1675487.
Article
CAS
Google Scholar
Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, et al: Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993, 90 (23): 10962-10966. 10.1073/pnas.90.23.10962.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schatzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ, Weiner RI, Mobley WC, Prusiner SB: A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol. 1997, 71 (11): 8821-8831.
PubMed Central
CAS
PubMed
Google Scholar
Gorodinsky A, Harris DA: Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol. 1995, 129 (3): 619-627. 10.1083/jcb.129.3.619.
Article
CAS
PubMed
Google Scholar
Christensen HM, Harris DA: Prion protein lacks robust cytoprotective activity in cultured cells. Mol Neurodegener. 2008, 3: 11-10.1186/1750-1326-3-11.
Article
PubMed Central
PubMed
Google Scholar
Puglielli L, Tanzi RE, Kovacs DM: Alzheimer's disease: the cholesterol connection. Nat Neurosci. 2003, 6 (4): 345-351. 10.1038/nn0403-345.
Article
CAS
PubMed
Google Scholar
De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F: Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature. 1998, 391 (6665): 387-390. 10.1038/34910.
Article
CAS
PubMed
Google Scholar
Tamboli IY, Prager K, Thal DR, Thelen KM, Dewachter I, Pietrzik CU, St George-Hyslop P, Sisodia SS, De Strooper B, Heneka MT, et al: Loss of gamma-secretase function impairs endocytosis of lipoprotein particles and membrane cholesterol homeostasis. J Neurosci. 2008, 28 (46): 12097-12106. 10.1523/JNEUROSCI.2635-08.2008.
Article
CAS
PubMed
Google Scholar
Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB: Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol. 1995, 129 (1): 121-132. 10.1083/jcb.129.1.121.
Article
CAS
PubMed
Google Scholar
Haviv Y, Avrahami D, Ovadia H, Ben-Hur T, Gabizon R, Sharon R: Induced neuroprotection independently from PrPSc accumulation in a mouse model for prion disease treated with simvastatin. Arch Neurol. 2008, 65 (6): 762-775. 10.1001/archneur.65.6.762.
Article
PubMed
Google Scholar
Vetrugno V, Di Bari MA, Nonno R, Puopolo M, D'Agostino C, Pirisinu L, Pocchiari M, Agrimi U: Oral pravastatin prolongs survival time of scrapie-infected mice. J Gen Virol. 2009, 90 (Pt 7): 1775-1780.
Article
CAS
PubMed
Google Scholar
Mok SW, Thelen KM, Riemer C, Bamme T, Gultner S, Lutjohann D, Baier M: Simvastatin prolongs survival times in prion infections of the central nervous system. Biochem Biophys Res Commun. 2006, 348 (2): 697-702. 10.1016/j.bbrc.2006.07.123.
Article
CAS
PubMed
Google Scholar
Gilch S, Bach C, Lutzny G, Vorberg I, Schatzl HM: Inhibition of cholesterol recycling impairs cellular PrP(Sc) propagation. Cell Mol Life Sci. 2009, 66 (24): 3979-3991. 10.1007/s00018-009-0158-4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bach C, Gilch S, Rost R, Greenwood AD, Horsch M, Hajj GN, Brodesser S, Facius A, Schadler S, Sandhoff K, et al: Prion-induced activation of cholesterogenic gene expression by Srebp2 in neuronal cells. J Biol Chem. 2009, 284 (45): 31260-31269. 10.1074/jbc.M109.004382.
Article
PubMed Central
CAS
PubMed
Google Scholar
Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, et al: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3 (2): 87-98. 10.1016/j.cmet.2006.01.005.
Article
CAS
PubMed
Google Scholar
Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI: MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res. 2010, 51 (6): 1513-1523. 10.1194/jlr.M004812.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marquart TJ, Allen RM, Ory DS, Baldan A: miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A. 2010, 107 (27): 12228-12232. 10.1073/pnas.1005191107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Naar AM: MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science (New York, NY). 2010, 328 (5985): 1566-1569. 10.1126/science.1189123.
Article
CAS
Google Scholar
Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C: MiR-33 contributes to the regulation of cholesterol homeostasis. Science (New York, NY). 2010, 328 (5985): 1570-1573. 10.1126/science.1189862.
Article
CAS
Google Scholar
Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EM, et al: Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 2009, 23 (11): 1313-1326. 10.1101/gad.1781009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bushati N, Cohen SM: microRNA functions. Annu Rev Cell Dev Biol. 2007, 23: 175-205. 10.1146/annurev.cellbio.23.090506.123406.
Article
CAS
PubMed
Google Scholar
Winter J, Jung S, Keller S, Gregory RI, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009, 11 (3): 228-234. 10.1038/ncb0309-228.
Article
CAS
PubMed
Google Scholar
Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A: A MicroRNA feedback circuit in midbrain dopamine neurons. Science (New York, NY). 2007, 317 (5842): 1220-1224. 10.1126/science.1140481.
Article
CAS
Google Scholar
Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL: The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci. 2008, 28 (53): 14341-14346. 10.1523/JNEUROSCI.2390-08.2008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lukiw WJ: Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport. 2007, 18 (3): 297-300. 10.1097/WNR.0b013e3280148e8b.
Article
CAS
PubMed
Google Scholar
Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA: A miRNA signature of prion induced neurodegeneration. PLoS One. 2008, 3 (11): e3652-10.1371/journal.pone.0003652.
Article
PubMed Central
PubMed
Google Scholar
Montag J, Hitt R, Opitz L, Schulz-Schaeffer WJ, Hunsmann G, Motzkus D: Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol Neurodegener. 2009, 4: 36-10.1186/1750-1326-4-36.
Article
PubMed Central
PubMed
Google Scholar
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005, 433 (7027): 769-773. 10.1038/nature03315.
Article
CAS
PubMed
Google Scholar
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature. 2008, 455 (7209): 64-71. 10.1038/nature07242.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE: Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005, 122 (4): 553-563. 10.1016/j.cell.2005.07.031.
Article
CAS
PubMed
Google Scholar
Cheng C, Li LM: Inferring microRNA activities by combining gene expression with microRNA target prediction. PLoS One. 2008, 3 (4): e1989-10.1371/journal.pone.0001989.
Article
PubMed Central
PubMed
Google Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466 (7308): 835-840. 10.1038/nature09267.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ: Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PLoS One. 2010, 5 (2): e8898-10.1371/journal.pone.0008898.
Article
PubMed Central
PubMed
Google Scholar
Tatro ET, Scott ER, Nguyen TB, Salaria S, Banerjee S, Moore DJ, Masliah E, Achim CL, Everall IP: Evidence for Alteration of Gene Regulatory Networks through MicroRNAs of the HIV-infected brain: novel analysis of retrospective cases. PLoS One. 2010, 5 (4): e10337-10.1371/journal.pone.0010337.
Article
PubMed Central
PubMed
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol. 2003, 5 (1): R1-10.1186/gb-2003-5-1-r1.
Article
PubMed Central
PubMed
Google Scholar
Winer J, Jung CK, Shackel I, Williams PM: Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem. 1999, 270 (1): 41-49. 10.1006/abio.1999.4085.
Article
CAS
PubMed
Google Scholar
Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, Lu R, Ansel KM, Heissmeyer V, Einav S, Jackson W, et al: Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathog. 2010, 6 (2): e1000764-10.1371/journal.ppat.1000764.
Article
PubMed Central
PubMed
Google Scholar
Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, Ukekawa R, Funakoshi T, Kurokawa T, Suzuki H, Hayashizaki Y, et al: A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010, 20 (10): 1398-1410. 10.1101/gr.106054.110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu H, Ye C, Ramirez D, Manjunath N: Alternative processing of primary microRNA transcripts by Drosha generates 5' end variation of mature microRNA. PLoS One. 2009, 4 (10): e7566-10.1371/journal.pone.0007566.
Article
PubMed Central
PubMed
Google Scholar
Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, et al: Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2011, 24 (10): 992-1009.
Article
Google Scholar
Zhao S, Liu MF: Mechanisms of microRNA-mediated gene regulation. Science in China. 2009, 52 (12): 1111-1116. 10.1007/s11427-009-0152-y.
CAS
PubMed
Google Scholar
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007, 129 (7): 1401-1414. 10.1016/j.cell.2007.04.040.
Article
PubMed Central
CAS
PubMed
Google Scholar
Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR: Probing microRNAs with microarrays: tissue specificity and functional inference. RNA. 2004, 10 (11): 1813-1819. 10.1261/rna.7119904.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S: A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet. 2008, 17 (19): 3030-3042. 10.1093/hmg/ddn201.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD: Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA (New York, NY). 2008, 14 (1): 35-42.
Article
CAS
Google Scholar
Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, Parkin RK, Fritz B, Wyman SK, de Bruijn E, Voest EE, et al: Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods. 2009, 6 (7): 474-476. 10.1038/nmeth0709-474.
Article
CAS
PubMed
Google Scholar
Meyer SU, Pfaffl MW, Ulbrich SE: Normalization strategies for microRNA profiling experiments: a 'normal' way to a hidden layer of complexity?. Biotechnol Lett. 2010, 32 (12): 1777-1788. 10.1007/s10529-010-0380-z.
Article
CAS
PubMed
Google Scholar
Saba R, Gushue S, Huzarewich RL, Manguiat K, Medina S, Robertson C, Booth SA: MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One. 2012, 7 (2): e30832-10.1371/journal.pone.0030832.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lukiw WJ, Dua P, Pogue AI, Eicken C, Hill JM: Upregulation of micro RNA-146a (miRNA-146a), a marker for inflammatory neurodegeneration, in sporadic Creutzfeldt-Jakob disease (sCJD) and Gerstmann-Straussler-Scheinker (GSS) syndrome. J Toxicol Environ Heal. 2011, 74 (22–24): 1460-1468.
Article
CAS
Google Scholar
Majer A, Booth SA: Computational methodologies for studying non-coding RNAs relevant to central nervous system function and dysfunction. Brain Res. 2010, 1338: 131-145.
Article
CAS
PubMed
Google Scholar
Sarkar S, Dey BK, Dutta A: MiR-322/424 and −503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell. 2010, 21 (13): 2138-2149. 10.1091/mbc.E10-01-0062.
Article
PubMed Central
CAS
PubMed
Google Scholar
Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y, de Hoon MJ, Kubosaki A, Kaiho A, Suzuki M, et al: Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia. 2010, 24 (2): 460-466. 10.1038/leu.2009.246.
Article
CAS
PubMed
Google Scholar
Mendell JT: miRiad roles for the miR-17-92 cluster in development and disease. Cell. 2008, 133 (2): 217-222. 10.1016/j.cell.2008.04.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barroso-delJesus A, Romero-Lopez C, Lucena-Aguilar G, Melen GJ, Sanchez L, Ligero G, Berzal-Herranz A, Menendez P: Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol. 2008, 28 (21): 6609-6619. 10.1128/MCB.00398-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V, et al: Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science (New York, NY). 2007, 315 (5818): 1579-1582. 10.1126/science.1136319.
Article
CAS
Google Scholar
Chasseigneaux S, Pastore M, Britton-Davidian J, Manie E, Stern MH, Callebert J, Catalan J, Casanova D, Belondrade M, Provansal M, et al: Genetic heterogeneity versus molecular analysis of prion susceptibility in neuroblasma N2a sublines. Arch Virol. 2008, 153 (9): 1693-1702. 10.1007/s00705-008-0177-8.
Article
CAS
PubMed
Google Scholar
Burns M, Duff K: Cholesterol in Alzheimer's disease and tauopathy. Ann N Y Acad Sci. 2002, 977: 367-375. 10.1111/j.1749-6632.2002.tb04839.x.
Article
CAS
PubMed
Google Scholar
Valenza M, Rigamonti D, Goffredo D, Zuccato C, Fenu S, Jamot L, Strand A, Tarditi A, Woodman B, Racchi M, et al: Dysfunction of the cholesterol biosynthetic pathway in Huntington's disease. J Neurosci. 2005, 25 (43): 9932-9939. 10.1523/JNEUROSCI.3355-05.2005.
Article
CAS
PubMed
Google Scholar
Valenza M, Cattaneo E: Cholesterol dysfunction in neurodegenerative diseases: is Huntington's disease in the list?. Prog Neurobiol. 2006, 80 (4): 165-176. 10.1016/j.pneurobio.2006.09.005.
Article
CAS
PubMed
Google Scholar
Ohm TG, Treiber-Held S, Distl R, Glockner F, Schonheit B, Tamanai M, Meske V: Cholesterol and tau protein–findings in Alzheimer's and Niemann Pick C's disease. Pharmacopsychiatry. 2003, 36 (Suppl 2): S120-S126.
CAS
PubMed
Google Scholar