Flor HH: The current status of gene for gene concept. Ann Rev Phytopathol. 1971, 9: 275-296. 10.1146/annurev.py.09.090171.001423.
Article
Google Scholar
Dangl JL, Jones JDG: Plant pathogens and integrated responses to infection. Nature. 2001, 411: 826-833. 10.1038/35081161.
Article
CAS
PubMed
Google Scholar
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW: Genome wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell. 2003, 15: 809-834. 10.1105/tpc.009308.
Article
PubMed Central
CAS
PubMed
Google Scholar
DeYoung BJ, Innes RW: Plant NBS-LRR proteins in pathogen sensing and host. Nat Immunol. 2006, 7: 1243-1249. 10.1038/ni1410.
Article
PubMed Central
CAS
PubMed
Google Scholar
McHale L, Tan X, Koehl P, Michelmore RW: Plant NBS-LRR proteins: adaptable guards. Genome Biol. 2006, 7: 212-
Article
PubMed Central
PubMed
Google Scholar
Liu JL, Liu XL, Dai LY, Wang GL: Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genomics. 2007, 34: 765-776. 10.1016/S1673-8527(07)60087-3.
Article
PubMed
Google Scholar
Holub EB: The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet. 2001, 2: 516-527. 10.1038/35080508.
Article
CAS
PubMed
Google Scholar
Yue JX, Meyers BC, Chen JQ, Tian DC, Yang SH: Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol. 2012, 193: 1049-1063. 10.1111/j.1469-8137.2011.04006.x.
Article
CAS
PubMed
Google Scholar
Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND: Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding super family. Plant J. 1999, 20: 317-332. 10.1046/j.1365-313X.1999.t01-1-00606.x.
Article
CAS
PubMed
Google Scholar
Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ: The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell. 2002, 14: 2929-2939. 10.1105/tpc.005793.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kobe B, Deisenhofer J: A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature. 1995, 374: 183-186. 10.1038/374183a0.
Article
CAS
PubMed
Google Scholar
Leister RT, Katagiri F: A resistance gene product of the nucleotide binding site-leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J. 2000, 22: 345-354. 10.1046/j.1365-313x.2000.00744.x.
Article
CAS
PubMed
Google Scholar
Yu YG, Buss GR, Saghai Maroof MA: Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA. 1996, 93: 11751-11756. 10.1073/pnas.93.21.11751.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gentzbittel L, Mouzeyar S, Badaoui S, Mestries E, Vear F, Tourvieille de Labrouhe D, Nicolas P: Cloning of molecular markers for disease resistance in sunflower, Helianthus annuus L. Theor Appl Genet. 1998, 96: 519-525. 10.1007/s001220050769.
Article
CAS
PubMed
Google Scholar
Pan QL, Wendel J, Fluhr R: Divergent evolution of plant NBS LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol. 2000, 50: 203-213.
CAS
PubMed
Google Scholar
Tian YY, Fan LJ, Thurau T, Jung C, Cai DG: The absence of TIR-type resistance gene analogues in the sugar beet (Beta vulgaris L.) genome. J Mol Evol. 2004, 58: 40-53. 10.1007/s00239-003-2524-4.
Article
CAS
PubMed
Google Scholar
Wan HJ, Zhao ZG, Malik AA, Qian CT, Chen JF: Identification vand characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC Plant Biol. 2010, 10: 186-10.1186/1471-2229-10-186.
Article
PubMed Central
PubMed
Google Scholar
Zhang HL, Wang YJ, Zhang CH, Wang XP, Li HE, Xu WR: Isolation, characterization and expression analysis of resistance gene candidates in pear (Pyrus spp.). Sci Horticul. 2011, 127: 282-289. 10.1016/j.scienta.2010.10.016.
Article
CAS
Google Scholar
Mutlu N, Miklas PN, Coyne DP: Resistance gene analog polymorphism (RGAP) markers co-localize with disease resistance genes and QTL in common bean. Mol breeding. 2006, 17: 127-135. 10.1007/s11032-005-4474-6.
Article
CAS
Google Scholar
Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND: Diversity, distribution and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol. 2002, 54: 548-562. 10.1007/s00239-001-0057-2.
Article
CAS
PubMed
Google Scholar
Speulman E, Bouchez D, Holub EB, Beynon JL: Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J. 1998, 14: 467-474. 10.1046/j.1365-313X.1998.00138.x.
Article
CAS
PubMed
Google Scholar
Ashfield T, Bocian A, Held D, Henk AD, Marek LF, Danesh D, Penūela S, Meksem K, Lightfoot DA, Young ND, Shoemaker RC, Innes RW: Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. Mol Plant Microbe Interact. 2003, 16: 817-826. 10.1094/MPMI.2003.16.9.817.
Article
CAS
PubMed
Google Scholar
Radwan O, Bouzidi MF, Nicolas P, Mouzeyar S: Development of PCR markers of the PI5/PI8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC-NBS–LRR sequences. Theor Appl Genet. 2004, 109: 176-185. 10.1007/s00122-004-1613-0.
Article
CAS
PubMed
Google Scholar
Hulbert SH, Webb CA, Smith SM, Sun Q: Resistance gene complexes: Evolution and utilization. Annu Rev Phytopathol. 2001, 39: 285-312. 10.1146/annurev.phyto.39.1.285.
Article
CAS
PubMed
Google Scholar
Richly E, Kurth J, Leister D: Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol. 2002, 19: 76-84. 10.1093/oxfordjournals.molbev.a003984.
Article
CAS
PubMed
Google Scholar
Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D: Genome-wide identification of NBS genes in rice reveals significant expansion of divergent non-TIR NBS Genes. Mol Genet Genomics. 2004, 271: 402-415. 10.1007/s00438-004-0990-z.
Article
CAS
PubMed
Google Scholar
Mondragón-Palomino M, Meyers BC, Michelmore RW, Gaut BS: Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 2002, 12: 1305-1315. 10.1101/gr.159402.
Article
PubMed Central
PubMed
Google Scholar
Yang SH, Zhang XH, Yue JX, Tian DC, Chen JQ: Recent duplications domainate NBS-encoding gene expansion in two woody species. Mol Genet Genomics. 2008, 280: 187-198. 10.1007/s00438-008-0355-0.
Article
CAS
PubMed
Google Scholar
Xu Q, Wen XP, Deng XX: Isolation and TIR and nonTIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Genet. 2005, 111: 819-830. 10.1007/s00122-005-0002-7.
Article
CAS
PubMed
Google Scholar
Xu Q, Wen XP, Deng XX: Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol Phylogenet Evol. 2007, 44: 315-324. 10.1016/j.ympev.2006.12.029.
Article
CAS
PubMed
Google Scholar
Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T: Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science. 2007, 318: 645-648. 10.1126/science.1144958.
Article
PubMed
Google Scholar
Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ: Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci. 1999, 96: 14153-14158. 10.1073/pnas.96.24.14153.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen R, Li H, Zhang L, Zhang J, Xiao J, Ye Z: CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. Plant Cell Rep. 2007, 26: 895-905. 10.1007/s00299-007-0304-0.
Article
CAS
PubMed
Google Scholar
Egea-gilabert C, Dickinson MJ, Bilotti G, Candela ME: Isolation of resistance gene analogs in pepper using modified AFLPs. Biol Plantarum. 2003, 47: 27-32.
Article
CAS
Google Scholar
Pflieger S, Lefebvre V, Caranta C, Blattes A, Goffinet B, Palloix A: Disease resistance gene analogs as candidates for QTLs involved in pepper-pathogen interactions. Genome. 1999, 42: 1100-1110. 10.1139/g99-067.
Article
CAS
PubMed
Google Scholar
Kochieva EZ, Ryzhova NN: Analysis of resistance gene family diversity in pepper (Capsicum annuum). Biochem Biophy Mol Biol. 2009, 425: 256-258.
Google Scholar
Zhang LY, Chen RG, Zhang JH: Cloning and analysis of resistance gene analogs from pepper (Capsicum annuum L.). Agr Sci China (in Chinese). 2008, 41: 169-175.
Google Scholar
Noir S, Combes M-C, Anthony F, Lashermes P: Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Mol Gen Genomics. 2001, 265: 654-662. 10.1007/s004380100459.
Article
CAS
Google Scholar
Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmitter FG: Cloning and characterization of NBS–LRR class resistance-gene candidate sequences in citrus. Theor Appl Genet. 2000, 101: 814-822. 10.1007/s001220051548.
Article
CAS
Google Scholar
van der Biezen EA, Jones JDG: The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1998, 8: R226-R227. 10.1016/S0960-9822(98)70145-9.
Article
CAS
PubMed
Google Scholar
Aravind L, Iyer LM, Leipe DD, Koonin EV: A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain. Genome Biol. 2004, 5: R30-10.1186/gb-2004-5-5-r30.
Article
PubMed Central
CAS
PubMed
Google Scholar
Leipe DD, Koonin EV, Aravind L: STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol. 2004, 343: 1-28. 10.1016/j.jmb.2004.08.023.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gu X: Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol. 1999, 16: 1664-1674. 10.1093/oxfordjournals.molbev.a026080.
Article
CAS
PubMed
Google Scholar
Gu X: A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences. Mol Biol Evol. 2006, 23: 1937-1945. 10.1093/molbev/msl056.
Article
CAS
PubMed
Google Scholar
Michelmore R, Meyers B: Clusters of resistance genes in plants evolve by divergent selection and birth-and-death process. Genome Res. 1998, 8: 1113-1130.
CAS
PubMed
Google Scholar
Martin GB, Brommonschenkel S, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD: Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993, 262: 1432-1436. 10.1126/science.7902614.
Article
CAS
PubMed
Google Scholar
Creevey CJ, McInerney JO: CRANN: Detecting adaptive evolution in protein-coding DNA sequences. Bioinformatics. 2003, 19: 1726-10.1093/bioinformatics/btg225.
Article
CAS
PubMed
Google Scholar
Mazin PV, Gelfand MS, Mironov AA, Rakhmaninova AB, Rubinov AR, Russell RB, Kalinina OV: An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies. Algorithm Mol Biol. 2010, 5: 29-10.1186/1748-7188-5-29.
Article
Google Scholar
Thomma BP, Penninckx IA, Broekaer WF, Cammue BP: The complexity of disese signaling in Arabidopsis. Curr Opin Immunol. 2011, 13: 63-68.
Article
Google Scholar
Shirano Y, Kachroo P, Shah J, Klessig DF: A gain-of-function mutation in an arabidopsis Toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell. 2002, 14: 3149-3162. 10.1105/tpc.005348.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xiao SX, Brown EP, Brearley C, Turner JG: Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell. 2003, 15: 33-45. 10.1105/tpc.006940.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xiong QY, Wei LJ, Sen ZJ, Hong RM, Ping XL, Qing ZM: Molecular cloning and characterisation of a non-TIR-NBS-LRR type disease resistance gene analogue from sugarcane. Sugar Tech. 2008, 10: 71-73. 10.1007/s12355-008-0012-2.
Article
Google Scholar
Wang BJ, Zhang ZG, Li XG, Wang YJ, He CY, Zhang JS, Chen SY: Cloning and analysis of a disease resistance gene homolog from soybean. Acta Botan Sin. 2003, 45: 864-870.
CAS
Google Scholar
Wang BJ, Wang YJ, Wang Q, Luo GZ, Zhang ZG, He CY, He SJ, Zhang JS, Gai JY, Chen SY: Characterization of an NBS-LRR resistance gene homologue from soybean. J Plant Physiol. 2004, 161: 815-822. 10.1016/j.jplph.2004.01.007.
Article
CAS
PubMed
Google Scholar
Tian AG, Luo GZ, Wang YJ, Zhang JS, Gai JY, Chen SY: Isolation and characterization of a Pti1 homologue from soybean. J Exp Bot. 2004, 396: 535-537.
Article
Google Scholar
Bendahmane A, Querci M, Kanyuka K, Baulcombe DC: Agrobacterium transient expression system as a tool for isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J. 2000, 21: 73-81. 10.1046/j.1365-313x.2000.00654.x.
Article
CAS
PubMed
Google Scholar
Baulcombe DC: Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol. 1999, 2: 109-113. 10.1016/S1369-5266(99)80022-3.
Article
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25: 4876-4882. 10.1093/nar/25.24.4876.
Article
PubMed Central
CAS
PubMed
Google Scholar
van der Biezen EA, Jones JD: The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1998, 8: R226-R227. 10.1016/S0960-9822(98)70145-9.
Article
CAS
PubMed
Google Scholar
Gu X, Vander Velden K: DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics. 2002, 18: 500-501. 10.1093/bioinformatics/18.3.500.
Article
CAS
PubMed
Google Scholar
Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986, 3: 418-426.
CAS
PubMed
Google Scholar
Comeron JM: A method for estimating the numbers of synonymous and non-synonymous substitutions per site. J Mol Evol. 1995, 41: 1152-1159.
Article
CAS
PubMed
Google Scholar
Comeron JM: K-Estimator: Calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics. 1999, 15: 763-764. 10.1093/bioinformatics/15.9.763.
Article
CAS
PubMed
Google Scholar
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Wan HJ, Yuan W, Ruan MY, Ye QJ, Wang RQ, Li ZM, Zhou GZ, Yao ZP, Zhao J, Liu SJ, Yang YJ: Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem Biophys Res Commun. 2011, 416: 24-30. 10.1016/j.bbrc.2011.10.105.
Article
CAS
PubMed
Google Scholar