Yoon HS, Hackett J, Ciniglia C, Pinto G, Bhattacharya D: A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 2004, 21: 809-818. 10.1093/molbev/msh075.
CAS
PubMed
Google Scholar
Grossman AR: Paths toward algal genomics. Plant Physiol. 2005, 137: 410-427. 10.1104/pp.104.053447.
PubMed Central
CAS
PubMed
Google Scholar
Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR: Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol. 2003, 38: 277-294. 10.1080/1364253031000136321.
Google Scholar
Loughnane CJ, McIvor LM, Rindi F, Stengel DB, Guiry MD: Morphology, rbcL phylogeny and distribution of distromatic Ulva (Ulvophyceae, Chlorophyta) in Ireland and southern Britain. Phycologia. 2008, 47: 416-429. 10.2216/PH07-61.1.
CAS
Google Scholar
McAvoy KM, Klug JL: Positive and negative effects of riverine input on the estuarine green alga Ulva intestinalis (syn. Enteromorpha intestinalis)(Linnaeus). Hydrobiologia. 2005, 545: 1-9. 10.1007/s10750-005-1923-5.
Google Scholar
Shimada S, Yokoyama N, Arai S, Hiraoka M: Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. J Appl Phycol. 2009, 20: 979-989.
Google Scholar
Hayden HS, Waaland JR: Phylogenetic systematics of the Ulvaceae (Ulvales, Ulvophyceae) using chloroplast and nuclear DNA sequences. J Phycol. 2002, 38: 1200-1212. 10.1046/j.1529-8817.2002.01167.x.
CAS
Google Scholar
Fletcher RL: The occurrence of ‘green tides’: a review. Marine benthic vegetation: recent changes and the effects of eutrophication. Edited by: Schramm W, Nienhuis PH. 1996, Berlin: Springerr-Verlag, 7-43.
Google Scholar
Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K: Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr. 1997, 42: 1105-1118. 10.4319/lo.1997.42.5_part_2.1105.
Google Scholar
Ye N, Zhang X, Mao Y, Liang C, Xu D, Zou J, Zhuang Z, Qing W: ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol Res. 2011, 26: 477-485. 10.1007/s11284-011-0821-8.
Google Scholar
Zhang X, Xu D, Mao Y, Li Y, Xue S, Zou J, Lian W, Liang C, Zhuang Z, Wang Q, Ye N: Settlement of vegetative fragments of Ulva prolifera confirmed as an important seed source for succession of a large-scale green tide bloom. Limnol Oceanogr. 2011, 56: 233-242. 10.4319/lo.2011.56.1.0233.
Google Scholar
Raffaelli DG, Raven JA, Poole LJ: Ecological impact of green macroalgal blooms. Oceanogr Mar Biol. 1998, 36: 97-125.
Google Scholar
Charlier RH, Morand P, Finkl CW, Thys A: Green tides on the Brittany Coasts. Aplinkos Tyrimai Inžinerija Ir Vadyba. 2007, 3: 52-59.
Google Scholar
Worm B, Heike K, Sommer U: Algal propagules banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia. 2001, 128: 281-293. 10.1007/s004420100648.
Google Scholar
Rudd S: Expressed sequence tags: alternative or complement to whole genome sequences?. Trends Plant Sci. 2003, 8: 321-329. 10.1016/S1360-1385(03)00131-6.
CAS
PubMed
Google Scholar
Bouck A, Vision T: The molecular ecologist’s guide to expressed sequence tags. Mol Ecol. 2007, 16: 907-924.
CAS
PubMed
Google Scholar
Nagaraj SH, Gasser RB, Ranganathan S: A hitchhiker’s guide to expressed sequence tag (EST) analysis. Brief Bioinform. 2007, 8: 6-21.
CAS
PubMed
Google Scholar
Riggins CW, Peng Y, Stewart CN, Tranela PJ: Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Manag Sci. 2010, 66: 1042-1052. 10.1002/ps.2006.
CAS
PubMed
Google Scholar
Pop M, Salzberg SL: Bioinformatics challenges of new sequencing technology. Trends Genet. 2008, 24: 142-149. 10.1016/j.tig.2007.12.006.
PubMed Central
CAS
PubMed
Google Scholar
Stinchcombe JR, Hoekstra HE: Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity. 2007, 100: 158-170.
PubMed
Google Scholar
Bourdon V, Naef F, Rao PH, Reuter V, Mok SC, Bosl GJ, Koul S, Murty VV, Kucherlapati RS, Chaganti RS: Genomic and expression analysis of the 12p11-p12 amplicon using EST arrays identifies two novel amplified and overexpressed genes. Cancer Res. 2002, 62: 6218-6223.
CAS
PubMed
Google Scholar
Cheung F, Win J, Lang JM, Hamilton J, Vuong H, Leach JE, Kamoun S, Levesque AC, Tisserat N, Buell CR: Analysis of the Pythium ultimum transcriptome using Sanger and pyrosequencing approaches. BMC Genomics. 2008, 9: 542-10.1186/1471-2164-9-542.
PubMed Central
PubMed
Google Scholar
Seki M, Narusaka M, Kamiya A, et al: Functional annotation of a full-length Arabidopsis cDNA collection. Science. 2002, 296: 141-145. 10.1126/science.1071006.
PubMed
Google Scholar
Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, Kamiya A, Carninci P, Hayashizaki Y, Shinozaki K, Kohara Y, Hasebe M: Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: Implication for land plant evolution. Proc Natl Acad Sci USA. 2003, 100: 8007-8012. 10.1073/pnas.0932694100.
PubMed Central
CAS
PubMed
Google Scholar
Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte AJ: Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet. 2005, 110: 802-811. 10.1007/s00122-004-1814-6.
CAS
PubMed
Google Scholar
Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA: Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics. 2010, 11: 180-196. 10.1186/1471-2164-11-180.
PubMed Central
PubMed
Google Scholar
Fei Z, Tang X, Alba R, White J, Ronning C, Martin G, Tanksley S, Giovannoni J: Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J. 2004, 40: 47-59. 10.1111/j.1365-313X.2004.02188.x.
PubMed
Google Scholar
Eveland AL, McCarty DR, Koch KE: Transcript profiling by 3'-untranslated region sequencing resolves expression of gene families. Plant Physiol. 2008, 146: 32-44.
PubMed Central
CAS
PubMed
Google Scholar
Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J: Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics. 2011, 12: 148-10.1186/1471-2164-12-148.
PubMed Central
CAS
PubMed
Google Scholar
Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH: Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol. 2008, 17: 1636-1647. 10.1111/j.1365-294X.2008.03666.x.
CAS
PubMed
Google Scholar
Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M: High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics. 2008, 9: 312-10.1186/1471-2164-9-312.
PubMed Central
PubMed
Google Scholar
Kristiansson E, Asker N, Forlin L, Larsson DGJ: Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing. BMC Genomics. 2009, 10: 345-10.1186/1471-2164-10-345.
PubMed Central
PubMed
Google Scholar
Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV: Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics. 2009, 10: 219-10.1186/1471-2164-10-219.
PubMed Central
PubMed
Google Scholar
Wheat CW: Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica. 2008, 138: 433-451.
PubMed
Google Scholar
Henry IM, Wilkinson MD, Hernandez JM, Schwarz-Sommer Z, Grotewold E, Mandoli DF: Comparison of ESTs from juvenile and adult phases of the giant unicellular green alga Acetabularia acetabulum. BMC Plant Biol. 2004, 4: 3-10.1186/1471-2229-4-3.
PubMed Central
PubMed
Google Scholar
Merchant SS, Prochnik SE, Vallon O, et al: The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007, 318: 245-250. 10.1126/science.1143609.
PubMed Central
CAS
PubMed
Google Scholar
Blanc G, Duncan G, Agarkova I, et al: The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex. Plant cell. 2010, 22: 2943-2955. 10.1105/tpc.110.076406.
PubMed Central
CAS
PubMed
Google Scholar
Derelle E, Ferraz C, Rombauts S, et al: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA. 2006, 103: 11647-11652. 10.1073/pnas.0604795103.
PubMed Central
CAS
PubMed
Google Scholar
Worden AZ, Lee J-H, Mock T, et al: Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas. Science. 2009, 324: 268-272. 10.1126/science.1167222.
CAS
PubMed
Google Scholar
Prochnik SE, Umen J, Nedelcu AM, et al: Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science. 2010, 329: 223-226. 10.1126/science.1188800.
PubMed Central
CAS
PubMed
Google Scholar
Stanley MS, Perry RM, Callow JA: Analysis of expressed sequence tags from the green alga Ulva linza (Chlorophyta). J Phycol. 2005, 41: 1219-1226. 10.1111/j.1529-8817.2005.00138.x.
CAS
Google Scholar
Niu J, Hu H, Hu S, Wang G, Peng G, Sun S: Analysis of expressed sequence tags from the Ulva prolifera (Chlorophyta). Chin J Oceanol Limnol. 2010, 28: 26-36. 10.1007/s00343-010-9120-4.
CAS
Google Scholar
Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz 1MC: Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun. 2012, 10.1038/ncomms1688.
Google Scholar
Waters ER: Molecular adaptation and the origin of land plants. Mol Phylogenet Evol. 2003, 29: 456-463. 10.1016/j.ympev.2003.07.018.
CAS
PubMed
Google Scholar
Neilson JA, Durnford DG: Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res. 2001, 106: 57-71.
Google Scholar
Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Chang W, Ruban AV: Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature. 2005, 436: 134-137. 10.1038/nature03795.
CAS
PubMed
Google Scholar
Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JT, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R: Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature. 2007, 450: 575-579. 10.1038/nature06262.
CAS
PubMed
Google Scholar
Jansson S: The light-harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta. 1994, 1184: 1-19. 10.1016/0005-2728(94)90148-1.
CAS
PubMed
Google Scholar
Elrad D, Grossman AR: A genome’s-eye view of the light harvesting polypeptides of Chlamydomonas reinhardtii. Curr Genet. 2004, 45: 61-75. 10.1007/s00294-003-0460-x.
CAS
PubMed
Google Scholar
Koziol AG, Borza T, Ishida K, Keeling P, Lee RW, Durnford DG: Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol. 2007, 143: 1802-1816. 10.1104/pp.106.092536.
PubMed Central
CAS
PubMed
Google Scholar
Sxi C, Worden AZ, Rodríguez F, Moreau H, Partensky F: New insights into the nature and phylogeny of prasinophyte antenna proteins: Ostreococcus tauri, a case study. Mo Biol Evol. 2005, 11: 2217-2230.
Google Scholar
Boekema EJ, van Roon H, van Breemen JFL, Dekker JP: Supramolecular organization of Photosystem II and its lightharvesting antenna in partially solubilized Photosystem II membranes. Eur J Biochem. 1999, 266: 444-452. 10.1046/j.1432-1327.1999.00876.x.
CAS
PubMed
Google Scholar
Yakushevska AE, Keegstra W, Boekema EJ, Dekker JP, Andersson J, Jansson S, Ruban AV, Horton P: The structure of Photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. Biochemistry. 2003, 42: 608-613. 10.1021/bi027109z.
CAS
PubMed
Google Scholar
Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV: Photosynthetic acclimation: Does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states?. FEBS J. 2008, 275: 1069-1079. 10.1111/j.1742-4658.2008.06263.x.
CAS
PubMed
Google Scholar
Schultes NP, Peterson RB: Phylogeny-directed structural analysis of the Arabidopsis PsbS protein. Biochem Biophy Res Co. 2007, 355: 464-470. 10.1016/j.bbrc.2007.01.173.
CAS
Google Scholar
Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK: A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000, 403: 391-395. 10.1038/35000131.
CAS
PubMed
Google Scholar
Li XP, Müller-Moulé P, Gilmore AM, Niyogi KK: PsbS dependent enhancement of feedback de-excitation protects Photosystem II from photoinhibition. Proc Natl Acad Sci USA. 2002, 99: 15222-15227. 10.1073/pnas.232447699.
PubMed Central
CAS
PubMed
Google Scholar
Li XP, Gilmore AM, Caffari S, Bassi R, Golan T, Kramer D, Niyogi KK: Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem. 2004, 279: 22866-22874. 10.1074/jbc.M402461200.
CAS
PubMed
Google Scholar
Bonente G, Howes B, Caffarri S, Smulevich G, Bassi R: The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with Energy Quenching. Photochem Photobiol. 2008, 84: 1359-1370. 10.1111/j.1751-1097.2008.00456.x.
CAS
PubMed
Google Scholar
Kiss AZ, Ruban AV, Horton P: The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem. 2008, 283: 3972-3978.
CAS
PubMed
Google Scholar
Betterle N, Ballottair M, Zorzan S, et al: Light-induced dissociation of an antenna hetero-oligomer is needed for nonphotochemical quenching induction. J Biol Chem. 2009, 22: 15255-15266.
Google Scholar
Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC, Tripodi M, Bassi R, Caffarri S: The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochem Photobiol. 2008, 84: 1359-1370. 10.1111/j.1751-1097.2008.00456.x.
CAS
PubMed
Google Scholar
Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK: An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature. 2009, 462: 518-522. 10.1038/nature08587.
CAS
PubMed
Google Scholar
Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, et al: Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii. PLoS Biol. 2011, 9: e1000577-10.1371/journal.pbio.1000577.
PubMed Central
CAS
PubMed
Google Scholar
Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto T: Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc Natl Acad Sci USA. 2010, 107: 11128-11133. 10.1073/pnas.1002873107.
PubMed Central
CAS
PubMed
Google Scholar
Raven JA, Cockell CS, Rocha CLL: The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc B. 2008, 1504: 2641-2650.
Google Scholar
Giordano M, Beardall J, Raven JA: CO2 Concentrating mechanisms in algae: mechanisms, evironmental mdulation, and Evolution. Annu Rev of Plant Biol. 2005, 56: 99-131. 10.1146/annurev.arplant.56.032604.144052.
CAS
Google Scholar
Palmqvist K, Yu JW, Badger MR: Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-Ci cells of Chlamydomonas reinhardtii and Scenedesmus obliquus. Physiol Plantarum. 1994, 90: 537-547. 10.1111/j.1399-3054.1994.tb08812.x.
CAS
Google Scholar
Yamano T, Fukuzawa H: Carbon-concentrating mechanism in a green alga Chlamydomonas reinhardtii, revealed by transcriptome analyses. J Basic Microb. 2009, 49: 42-51. 10.1002/jobm.200800352.
CAS
Google Scholar
Sage RF: The evolution of C4 photosynthesis. New Phytol. 2004, 161: 341-370. 10.1111/j.1469-8137.2004.00974.x.
CAS
Google Scholar
Giordano M, Beardall J, Raven JA: CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol. 2005, 56: 99-131. 10.1146/annurev.arplant.56.032604.144052.
CAS
PubMed
Google Scholar
Kremer BP: Metabolic implications of non-photosynthetic carbon fixation in brown macroalgae. Phycologia. 1981, 20: 242-250. 10.2216/i0031-8884-20-3-242.1.
CAS
Google Scholar
Cock JM, et al: The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature. 2010, 465: 617-621. 10.1038/nature09016.
CAS
PubMed
Google Scholar
Kerby NW, Raven JA: Transport and fixation of inorganic carbon by marine algae. Adv Bot Res. 1985, 11: 71-123.
CAS
Google Scholar
Lucas WJ, Berry JA: Inorganic carbon transport in aquatic photosynthetic organisms. Physiol Plant. 1985, 65: 539-543. 10.1111/j.1399-3054.1985.tb08687.x.
CAS
Google Scholar
Reiskind JB, Bowes G: The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci USA. 1991, 88: 2883-2887. 10.1073/pnas.88.7.2883.
PubMed Central
CAS
PubMed
Google Scholar
Fan X, Fang Y, Hu S, Wang G: Generation and analysis of 5318 expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). J Phycol. 2007, 43: 1287-1294. 10.1111/j.1529-8817.2007.00415.x.
CAS
Google Scholar
Xu J, Fan X, Zhang X, Xu D, Mou S, et al: Evidence of Coexistence of C3 and C4 Photosynthetic Pathways in a Green-Tide-Forming Alga, Ulva prolifera. PLoS One. 2012, 7 (5): e37438-10.1371/journal.pone.0037438.
PubMed Central
CAS
PubMed
Google Scholar
Brault D, Quéguiner B: Aquaculture-A Biotechnology in Progress. Effect of inorganic and organic nitrogen sources on growth of Ulva gigantean (Kutzing) Bliding. Edited by: Pauw ND, Jaspers E, Ackefors H, Wilkins N. 1989, Bredene: European Aquaculture Society, 425-430.
Google Scholar
Coon M: Cytochrome P450: nature's most versatile biological catalyst. Annu Rev Pharmacol. 2005, 45: 1-25. 10.1146/annurev.pharmtox.45.120403.100030.
CAS
Google Scholar
Initiative TAG: Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000, 408: 796-815. 10.1038/35048692.
Google Scholar
Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D: The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci USA. 2004, 101: 402-407. 10.1073/pnas.2237237100.
PubMed Central
CAS
PubMed
Google Scholar
Kim J, Smith J, Tian L, Dellapenna D: The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol. 2009, 50: 463-479. 10.1093/pcp/pcp005.
CAS
PubMed
Google Scholar
Mulderij G, Mooij WM, Smolders AJP, Van Donk E: Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquat Bot. 2005, 82: 284-296. 10.1016/j.aquabot.2005.04.001.
Google Scholar
Wang Y, Yu ZM, Song XX, Tang XX, Zhang SD: Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates. Aquat Bot. 2007, 86: 139-147. 10.1016/j.aquabot.2006.09.013.
Google Scholar
Huo YZ, Zhang JH, Xu SN, Tian QT, Zhang YJ, He PM: Effects of seaweed Gracilaria verrucosa on the growth of microalgae: A case study in the laboratory and in an enclosed sea of Hangzhou Bay, China. Harmful Algae. 2011, 10: 411-418. 10.1016/j.hal.2011.02.003.
Google Scholar
Jin Q, Dong S, Wang C: Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures. Eur J Phycol. 2005, 40: 1-37. 10.1080/09670260400009882.
Google Scholar
Mungur R, Glass AD, Goodenow DB, Lightfoot DA: Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. J Biomed Biotechnol. 2005, 2: 198-214.
Google Scholar
Grabowska A, Nowicki M, Kwinta J: Glutamate dehydrogenase of the germinating triticale seeds: gene expression, activity distribution and kinetic characteristics. Acta Physiol Plant. 2011, 33: 1981-1990. 10.1007/s11738-011-0801-1.
CAS
Google Scholar
Lightfoot DA, Bernhardt K, Mungur R, Nolte S, Ameziane R, Colter A, Jones K, Iqbal MJ, Varsa E, Young B: Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA) of E. coli. Euphytica. 2007, 156: 103-116. 10.1007/s10681-007-9357-y.
CAS
Google Scholar
Andersson JO, Roger AJ: Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes. BMC Evol Biol. 2003, 3: 14-10.1186/1471-2148-3-14.
PubMed Central
PubMed
Google Scholar
Asada K, Takahashi M: Production and scavenging of active oxygen in photosynthesis. Photoinhibition. Edited by: Kyle DJ, Osmond CB, Arntzen CJ. 1987, Amsterdam: Elsevier, 227-287.
Google Scholar
Bowler C, Montagu MV, Inzé D: Superoxide dismutases and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol. 1992, 43: 83-116. 10.1146/annurev.pp.43.060192.000503.
CAS
Google Scholar
Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Montagu MV, Inzé D, Camp WV: Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 1997, 16: 4806-4816. 10.1093/emboj/16.16.4806.
PubMed Central
CAS
PubMed
Google Scholar
Wu TM, Lee TM: Regulation of activity and gene expression of antioxidant enzymes in Ulva fasciata Delile (Ulvales, Chlorophyta) in response to excess copper. Phycologia. 2008, 47: 346-360. 10.2216/PH07-77.1.
CAS
Google Scholar
Scharf KD, Seddigue M, Vierling E: The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains (ACD proteins). Cell Stress Chaperon. 2001, 6: 225-237. 10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2.
CAS
Google Scholar
Young JC, Moarefi I, Hartl FU: Hsp90: a specialized but essential protein folding tool. J Cell Biol. 2001, 154: 267-273. 10.1083/jcb.200104079.
PubMed Central
CAS
PubMed
Google Scholar
Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R: The Gene Ontology Annotation (GOA) Database: sharingknowledge in Uniprot with Gene Ontology. Nucleic Acids Res. 2004, 32: 262-266. 10.1093/nar/gkh021.
Google Scholar
Huson DH, Auch A, Qi J, Schuster SC: Megan Analysis of Metagenome Data. Genome Res. 2007, 17: 377-386. 10.1101/gr.5969107.
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010, 38: 355-360. 10.1093/nar/gkp896.
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
CAS
PubMed
Google Scholar