Food and Agriculture Organization of the United Nations for a world without hunger. [http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor]
Kochian LV: Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol. 1995, 46: 237-260. 10.1146/annurev.pp.46.060195.001321.
Article
CAS
Google Scholar
Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Tekeda K: Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot. 2004, 55: 1335-1341. 10.1093/jxb/erh152.
Article
CAS
PubMed
Google Scholar
Wang JP, Raman H, Zhang GP, Mendham N, Zhou MX: Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci. 2006, 7 (10): 769-787. 10.1631/jzus.2006.B0769.
Article
CAS
Google Scholar
Zhou L-L, Bai G-H, Ma H-X, Carver BF: Quantitative trait loci for aluminum resistance in wheat. Mol Breeding. 2007, 19: 153-161. 10.1007/s11032-006-9054-x.
Article
CAS
Google Scholar
Cai S, Bai G-H, Zhang D: Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet. 2008, 117: 49-56. 10.1007/s00122-008-0751-1.
Article
CAS
PubMed
Google Scholar
Anioł A: Induction of aluminium tolerance in wheat seedlings by low doses of aluminium in the nutrient solution. Plant Physiol. 1984, 75: 551-555.
Google Scholar
Polle E, Konzak CF, Kittrick AJ: Visual detection of aluminium tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci. 1978, 18: 823-827. 10.2135/cropsci1978.0011183X001800050035x.
Article
CAS
Google Scholar
Ma JF, Zheng JS, Li XF, Takeda K, Matsumoto H: A rapid hydroponic screening for aluminium tolerance in barley. Plant Soil. 1997, 191 (1): 133-137. 10.1023/A:1004257711952.
Article
CAS
Google Scholar
Raman H, Moroni JS, Sato K, Read BJ, Scott BJ: Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet. 2002, 105: 458-464. 10.1007/s00122-002-0934-0.
Article
CAS
PubMed
Google Scholar
Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E: A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol. 2009, 149: 340-351. 10.1104/pp.108.129155.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maccaferri M, Sanguineti MC, Ben Salem M, El-Alumed A, del Moral LFG, Demontis A, Maalouf F, Nachit M, Nserallah N, Royo C, Tuberosa R: Association mapping in durum wheat grown in broad range of water regimes. J Exp Bot. 2010
Google Scholar
Brown PJ, Rooney WL, Franks C, Kresovich S: Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics. 2008, 180: 629-637. 10.1534/genetics.108.092239.
Article
PubMed Central
PubMed
Google Scholar
Jaccoud D, Peng K, Feinstein D, Kilian A: Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research. 2001, 29 (4): 25-10.1093/nar/29.4.e25.
Article
Google Scholar
Bolibok-Brągoszewska H, Heller Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M: DArT markers for the rye genome - genetic diversity and mapping. BMC Genomics. 2009, 10: 578-10.1186/1471-2164-10-578.
Article
PubMed Central
PubMed
Google Scholar
Jing H-C, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE: DArT markers: diversity analyses, genomes comparison, mappingand integration with SSR markers in Triticum monococcum. BMC Genomics. 2009, 10: 458-10.1186/1471-2164-10-458.
Article
PubMed Central
PubMed
Google Scholar
Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A: Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet. 2006, 113 (8): 1409-1420. 10.1007/s00122-006-0365-4.
Article
CAS
PubMed
Google Scholar
The Bristol Wheat Genomics Site. [http://www.cerealsdb.uk.net/CerealsDB/Documents/DOC_DArT_index.php]
Tyrka M, Bednarek PT, Kilian A, Wędzony M, Hura T, Bauer E: Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome. 2011, 54: 391-401. 10.1139/g11-009.
Article
CAS
PubMed
Google Scholar
González JM, Muñiz LM, Jouve N: Mapping of QTLs for androgenetic response based on a molecular genetic map of × Triticosecale Wittmack. Genome Research. 2005, 48: 999-1009. 10.1139/g05-064.
Article
Google Scholar
Korzun V, Malyshev S, Voylkov AV, Börner A: A genetic map of rye (Secale cerale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet. 2001, 102: 709-717. 10.1007/s001220051701.
Article
CAS
Google Scholar
Zhu S, Kaeppler HF: A genetic linkage map for hexaploid, cultivated oat (Avena sativa L.) based on an intraspecific cross 'Ogle/MAM17-5. Theor Appl Genet. 2003, 107: 26-35.
CAS
PubMed
Google Scholar
Collins NC, Tardieu F, Tuberosa R: Quantitative trait loci and crop performance under abiotic stress: where do we stand?. Plant Physiol. 2008, 147: 469-486. 10.1104/pp.108.118117.
Article
PubMed Central
CAS
PubMed
Google Scholar
Statistical Genetics of Quantitative Traits: Linkage, Maps, and QTL. Edited by: Wu RL, Ma C-X, Casella G. 2007, New York: Springer
Jannink JL, Walsh B: Association mapping in plant populations. Quantitative Genetics, Genomics and Plant Breeding. Edited by: Kang MS. 2002, Oxford: CAB International, 59-68.
Google Scholar
Zhu C, Gore M, Buckler ES, Yu J: Status and prospects of association mapping in plants. The Plant Genome. 2008, 1 (1): 5-20. 10.3835/plantgenome2008.02.0089.
Article
CAS
Google Scholar
Anioł A: Physiological aspects of aluminium tolerance associated with the long arm of chromosome 2D of the wheat (Triticum aestivum L.) genome. Theor Appl Genet. 1995, 91: 510-516. 10.1007/BF00222981.
Article
PubMed
Google Scholar
Camargo CEO: Wheat breeding. I. Inheritance of tolerance to aluminium toxicity in wheat. Bragantia. 1981, 40: 33-45. 10.1590/S0006-87051981000100004.
Article
Google Scholar
Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R: Association analysis of historical bread wheat germplasm usingadditive genetic covariance of relatives and population structure. Genetics. 2007, 177: 1889-1913. 10.1534/genetics.107.078659.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eleuch L, Jilal A, Grando S, Ceccarelli S, Schmising MK, Tsujimoto H, Hajer A, Daaloul A, Baum M: Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. J Integr Plant Biol. 2008, 50 (8): 1004-1014. 10.1111/j.1744-7909.2008.00670.x.
Article
CAS
PubMed
Google Scholar
Gardner KM, Wight CP, Molnar SJ, Yan W, Fetch JM, Tinker NA: Fine scale genetic and association mapping of the hulless trait in cultivated oat, Avena sativa. Proceeding of the Plant & Animal Genomes XVIII Conference: 9-13 January 2010. 2010, Town & Country Convention Center San Diego, CA, 2010: 336-
Google Scholar
Krill AM, Kirst M, Kochian LV, Buckler ES, Hoekenga OA: Association and linkage analysis of aluminum tolerance genes in maize. 2010, 5 (4): 9958-
Google Scholar
Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A: Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breeding. 2011, 27: 37-58. 10.1007/s11032-010-9411-7.
Article
Google Scholar
Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ: Association mapping of spot blotch resistance in wild barley. Mol Breeding. 2010, 26: 243-256. 10.1007/s11032-010-9402-8.
Article
Google Scholar
Simko I, Pechenick DA, McHale LK, Truco MJ, Ochoa OE, Michelmore RW, Scheffler BE: Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr. BMC Plant Biology. 2009, 9: 135-10.1186/1471-2229-9-135.
Article
PubMed Central
PubMed
Google Scholar
Singh RK, Bhat KV, Bhatia VS, Mohapatra T, Singh NK: Association mapping for photoperiod insensitivity trait in soybean. National Academy Science Letters. 2008, 31 (9-10): 281-283.
Google Scholar
Gupta PK, Rustgi S, Kulwal PL: Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology. 2005, 57: 461-485. 10.1007/s11103-005-0257-z.
Article
CAS
PubMed
Google Scholar
Carlson CS, Thomas DJ, Eberle MA, Swanson JE, Livingston RJ, Rieder MJ, Nickerson DA: Genomic regions exhibiting positive selection identified from dense genotype data. Genome Research. 2005, 1553-1565. 15
Miller W, Makova KD, Nekrutenko A, Hardison RC: Comparative genomics. Annu Rev Genomics Hum Genet. 2004, 5: 15-56. 10.1146/annurev.genom.5.061903.180057.
Article
CAS
PubMed
Google Scholar
Anioł A, Gustafson JP: Chromosome location of genes controlling aluminium tolerance in wheat, rye, and triticale. Can J of Genet Cytol. 1984, 26: 701-705.
Article
Google Scholar
Budzianowski G, Woś H: The effect of single D-genome chromosomes on aluminium tolerance of triticale. Euphytica. 2004, 137: 165-172.
Article
CAS
Google Scholar
Ma JF, Taketa S, Yang ZM: Aluminium tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol. 2000, 122: 687-694. 10.1104/pp.122.3.687.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stass A, Smit I, Eticha D, Oettler G, Horst JH: The significance of organic-anion exudation for the aluminium resistance of primary triticale derived from wheat and rye parents differing in aluminium resistance. Journal of Plant Nutrition and Soil Science. 2008, 171 (4): 634-642. 10.1002/jpln.200700331.
Article
CAS
Google Scholar
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ: A wheat gene encoding an aluminium-activated malate transporter. Plant Journal. 2004, 37: 645-653. 10.1111/j.1365-313X.2003.01991.x.
Article
CAS
PubMed
Google Scholar
Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, et al: Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet. 2007, 114: 249-260.
Article
CAS
PubMed
Google Scholar
Breseghello F, Sorrells ME: Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci. 2006, 46: 1323-1330. 10.2135/cropsci2005.09-0305.
Article
Google Scholar
Yu J, Buckler ES: Genetic association mapping and genome organization of maize. Curr Opin Biotechnol. 2006, 17: 155-160. 10.1016/j.copbio.2006.02.003.
Article
CAS
PubMed
Google Scholar
Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T: Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet. 2005, 206-217. 111
Casa AM, Pressoira G, Brown PJ, Mitchell SE, Rooney WL, Tuinstrac MR, Franks CD, Kresovicha S: Community resources and strategies for association mapping in sorghum. Crop Sci. 2008, 48: 30-40. 10.2135/cropsci2007.02.0080.
Article
Google Scholar
Breseghello F, Sorrells ME: Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics. 2006, 172: 1165-1177.
Article
PubMed Central
PubMed
Google Scholar
Kraakman ATW, Martinez F, Mussiraliev B, von Eeuwijk FA, Niks RE: Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed. 2006, 17: 41-58. 10.1007/s11032-005-1119-8.
Article
CAS
Google Scholar
Bao JS, Corke H, Sun M: Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch physicochemical properties in non waxy rice (Oryza sativa L.). Theor Appl Genet. 2006, 113: 1185-1196. 10.1007/s00122-006-0394-z.
Article
CAS
PubMed
Google Scholar
Olsen KM, Purugganan MD: Molecular evidence on het origin and evolution of glutinous rice. Genetics. 2002, 162: 941-950.
PubMed Central
CAS
PubMed
Google Scholar
Tracy WF, Whitt SR, Buckler ES: Recurrent mutation and genome evolution: Example of Sugary1 and the origin of sweet maize. Crop Sci. 2006, 46: 49-54.
Article
Google Scholar
Abdurakhmonov IY, Abdukarimov A: Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genomics. 2008, 2008: 1-18.
Article
Google Scholar
Pritchard JK, Stephens M, Rosenberg NA, Donnelly P: Association Mapping in Structured Populations. Am J Hum Genet. 2000, 67: 170-181. 10.1086/302959.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang JP, Raman H, Read B, Zhou MX, Mendham N, Venkatanagappa S: Validation of an Alt locus for aluminium tolerance scored with eriochrome cyanine R staining method in barley cultivar Honen (Hordeum vulgare L.). Aust J Agric Res. 2006, 57: 113-118. 10.1071/AR05202.
Article
CAS
Google Scholar
Carver BF, Ownby JD: Acid soil tolerance in wheat. Advances in Agronomy. 1995, 54: 117-173.
Article
CAS
Google Scholar
Principles and Procedures of Statistics. Edited by: Steel R, Torrie J. 1980, New York
Tinker NA, Kilian A, Wight P, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad Å, Howarth CJ, Jannink J-L, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells MS, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi LC, Carson ML, Ohm HW, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T: New DArT markers for oat provide enhanced map coverage and global germpalsm characterization. BMC Genomics. 2009, 10: 39-10.1186/1471-2164-10-39.
Article
PubMed Central
PubMed
Google Scholar
Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A: A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics. 2006, 7: 206-10.1186/1471-2164-7-206.
Article
PubMed Central
PubMed
Google Scholar
Hammer Ø, Harper DAT, Ryan PD: PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 2001, 4: 1-9.
Google Scholar
Bradbury PJ, Zhang DE, Kroon TM, Casstevens Y, Ramdoss Y, Buckler ES: TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics. 2007, 23: 2633-2635. 10.1093/bioinformatics/btm308.
Article
CAS
PubMed
Google Scholar
Bedo J, Wenzl P, Kowalczyk A, Kilian A: Precision-mapping and statistical validation of quantitative trait loci by machine learning. BMC Genetics. 2008, 9: 35-
Article
PubMed Central
PubMed
Google Scholar
Matos M, Camacho MV, Pérez-Flores V, Pernaute B, Pinto-Carnide O: A new aluminium tolerance gene located on rye chromosome arm 7RS. Theor Appl Genet. 2005, 111: 360-369. 10.1007/s00122-005-2029-1.
Article
CAS
PubMed
Google Scholar
Anioł A: Chromosomal location of aluminium tolerance genes in rye. Plant Breeding. 2004, 123 (2): 132-136. 10.1046/j.1439-0523.2003.00958.x.
Article
Google Scholar
Oleszczuk S, Rabiza-Swider J, Zimny J, Łukaszewski AJ: Aneuploidy among androgenic progeny of hexaploid triticale (X triticosecale Wittmack). Plant Cell Rep. 2011, 30 (4): 575-586. 10.1007/s00299-010-0971-0.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benito C, Silva-Navas J, Fontecha G, Hernández-Riquer MV, Eguren M, Salvador N, Gallego FJ: From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. Plant Soil. 2010, 327: 107-120. 10.1007/s11104-009-0035-9.
Article
CAS
Google Scholar
Gallego FJ, Benito C: Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor Appl Genet. 1997, 95: 393-399. 10.1007/s001220050575.
Article
CAS
Google Scholar
Vos P, Hogers R, Bleeker M, Rijans M, Van de Lee T, Hormes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M: AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23: 4407-4414. 10.1093/nar/23.21.4407.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bednarek PT, Kubicka H, Zawada M: Morphological, cytological and BSA-based testing on limited segregation population AFLPs. Cel Mol Biol Lett. 2002, 7: 635-648.
CAS
Google Scholar
Hackauf B, Wehling P: Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breeding. 2001, 121: 17-25.
Article
Google Scholar
Khlestkina EK, Than MHM, Pestsova EG, Röder MS, Malyshev SV: Mapping of 99 new microsatellite-derived loci in rye (Secale cerale L.) including 39 expressed sequence tags. Theor Appl Genet. 2004, 709-717. 102
Duchesne P, Bernatchez L: AFLPPOP: a computer program for simulated and real population allocation based on AFLP data. Molecular Ecology Notes. 2002, 2: 380-383. 10.1046/j.1471-8286.2002.00251.x.
Article
CAS
Google Scholar
Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics. 2000, 155: 945-959.
PubMed Central
CAS
PubMed
Google Scholar
Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology. 2005, 2611-2620. 14
Kumar S, Skjaeveland A, Orr RJ, Enger P, Ruden T, Mevik BH, Burki F, Botnen A, Shalchian -Tabrizi K: AIR: batch-oriented web program package for construction of supermatrices ready for phylogenomic analyses. BMC Bioinformatics. 2009, 10: 7-10.1186/1471-2105-10-7.
Article
Google Scholar
Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutationprogram for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007, 23: 1801-1806. 10.1093/bioinformatics/btm233.
Article
CAS
PubMed
Google Scholar
Flint-Garcia SA, Thornsberry JM, Buckler ES: Structure of linkage disequilibrium in plants. Annual Review of Plant Biology. 2003, 54: 357-374. 10.1146/annurev.arplant.54.031902.134907.
Article
CAS
PubMed
Google Scholar
Yu JM, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics. 2006, 38 (2): 203-208. 10.1038/ng1702.
Article
CAS
PubMed
Google Scholar
Hardy OJ, Vekemans X: SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Molecular Ecology Notes. 2002, 2: 618-620. 10.1046/j.1471-8286.2002.00305.x.
Article
Google Scholar
Zhivotovsky LA: Estimating population structure in diploids with multilocus dominant DNA markers. Molecular Ecology. 1999, 8: 907-913. 10.1046/j.1365-294x.1999.00620.x.
Article
CAS
PubMed
Google Scholar