Mallory AC, Bouche N: MicroRNA-directed regulation: to cleave or not to cleave. Trends Plant Sci. 2008, 13 (7): 359-367. 10.1016/j.tplants.2008.03.007.
Article
PubMed
Google Scholar
Brodersen P, Voinnet O: The diversity of RNA silencing pathways in plants. Trends Genet. 2006, 22 (5): 268-280. 10.1016/j.tig.2006.03.003.
Article
PubMed
Google Scholar
Kim VN: Sorting out small RNAs. Cell. 2008, 133 (1): 25-26. 10.1016/j.cell.2008.03.015.
Article
PubMed
Google Scholar
Carthew RW, Sontheimer EJ: Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009, 136 (4): 642-55. 10.1016/j.cell.2009.01.035.
Article
PubMed Central
PubMed
Google Scholar
Baulcombe D: RNA silencing in plants. Nature. 2004, 431: 356-363. 10.1038/nature02874.
Article
PubMed
Google Scholar
Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ: Targets of RNA-directed DNA methylation. Curr Opin Plant Biol. 2007, 10: 512-519. 10.1016/j.pbi.2007.06.007.
Article
PubMed
Google Scholar
Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W: Transcriptional control of gene expression by expression by microRNAs. Cell. 2010, 140: 111-122. 10.1016/j.cell.2009.12.023.
Article
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006, 57: 19-53. 10.1146/annurev.arplant.57.032905.105218.
Article
PubMed
Google Scholar
Voinnet O: Origin, biogenesis, and activity of plant microRNAs. Cell. 2009, 136 (4): 669-687. 10.1016/j.cell.2009.01.046.
Article
PubMed
Google Scholar
Wu L, Belasco JG: Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol cell. 2008, 29 (1): 1-7. 10.1016/j.molcel.2007.12.010.
Article
PubMed
Google Scholar
Llave C, Kasschau KD, Rector MA, Carrington JC: Endogenous and silencing-associated small RNAs in plants. Plant Cell. 2002, 14: 1605-1619. 10.1105/tpc.003210.
Article
PubMed Central
PubMed
Google Scholar
Eulalio A, Huntzinger E, Izaurralde E: Getting to the root of miRNA- mediated gene silencing. Cell. 2008, 132 (1): 9-14. 10.1016/j.cell.2007.12.024.
Article
PubMed
Google Scholar
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D: Control of leaf morphogenesis by microRNAs. Nature. 2003, 425: 257-263. 10.1038/nature01958.
Article
PubMed
Google Scholar
Sunkar R, Zhu JK: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004, 16: 2001-2019. 10.1105/tpc.104.022830.
Article
PubMed Central
PubMed
Google Scholar
Giovannoni JJ: Genetic regulation of fruit development and ripening. Plant Cell. 2004, 16: 170-180. 10.1105/tpc.019158.
Article
Google Scholar
Giovannoni JJ: Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol. 2007, 10: 283-289. 10.1016/j.pbi.2007.04.008.
Article
PubMed
Google Scholar
Cara B, Giovannoni JJ: The molecular biology of ethylene during tomato fruit development and maturation. Plant Science. 2008, 175: 106-113. 10.1016/j.plantsci.2008.03.021.
Article
Google Scholar
Pilcher RL, Moxon S, Pakseresht N, Moulton V, Manning K, Seymour G, Dalmay T: Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta. 2007, 226: 709-717. 10.1007/s00425-007-0518-y.
Article
PubMed
Google Scholar
Yin ZJ, Li CH, Han XL, Shen FF: Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene. 2008, 414: 60-66. 10.1016/j.gene.2008.02.007.
Article
PubMed
Google Scholar
Zhang J, Zeng R, Chen J, Liu X, Liao Q: Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill. Gene. 2008, 423: 1-7. 10.1016/j.gene.2008.05.023.
Article
PubMed
Google Scholar
Itaya A, Bundschuh R, Archual AJ, Joung JG, Fei ZJ, Dai XB, Zhao PX, Tang YH, Nelson RS, Ding B: Small RNAs in tomato fruit and leaf development. Biochim Biophys Acta. 2008, 1779: 99-107.
Article
PubMed
Google Scholar
Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ: Elucidation of the small RNA component of the transcriptome. Science. 2005, 309 (5740): 1567-1569. 10.1126/science.1114112.
Article
PubMed
Google Scholar
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC: High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA Genes. PLoS ONE. 2007, 2 (2): 219-232. 10.1371/journal.pone.0000219.
Article
Google Scholar
Johnson C, Bowman L, Adai AT, Vance V, Sundaresan V: CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Research. 2007, 35: 829-833. 10.1093/nar/gkl991.
Article
Google Scholar
Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK: Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biology. 2008, 8: 25-41. 10.1186/1471-2229-8-25.
Article
PubMed Central
PubMed
Google Scholar
Moxon SJR, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T: Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008, 18 (10): 1602-1609. 10.1101/gr.080127.108.
Article
PubMed Central
PubMed
Google Scholar
White PJ: Recent advances in fruit development and ripening: an overview. J Exp Bot. 2002, 53: 1995-2000. 10.1093/jxb/erf105.
Article
PubMed
Google Scholar
Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y: Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007, 39: 787-791. 10.1038/ng2036.
Article
PubMed
Google Scholar
Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N: The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development. 2009, 136: 823-832. 10.1242/dev.031625.
Article
PubMed
Google Scholar
Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T: Identification and characterization of a novel miR159 target not related to MYB in tomato. Planta. 2010, 232: 1009-1022. 10.1007/s00425-010-1231-9.
Article
PubMed
Google Scholar
Zhang X, Zou Z, Zhang J, Zhang Y, Han Q, Hu T, Xu X, Liu H, Li H, Ye Z: Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett. 2011, 585: 435-439. 10.1016/j.febslet.2010.12.036.
Article
PubMed
Google Scholar
Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G: Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiologia Plantarum. 2010, 138: 226-237. 10.1111/j.1399-3054.2009.01320.x.
Article
PubMed
Google Scholar
Naqvi AR, Haq QM, Mukherjee SK: MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol J. 2010, 7: 281-296. 10.1186/1743-422X-7-281.
Article
PubMed Central
PubMed
Google Scholar
Stav R, Hendelman A, Buxdorf K, Arazi T: Transgenic expression of tomato bushy stunt virus silencing suppressor P19 via the pOp/LhG4 transactivation system induces viral-like symptoms in tomato. Virus Genes. 2010, 40: 19-129.
Article
Google Scholar
Zhang XH, Zou Z, Gong PJ, Zhang JH, Ziaf K, Li HX, Xiao FM, Ye ZB: Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett. 2011, 33: 403-409. 10.1007/s10529-010-0436-0.
Article
PubMed
Google Scholar
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP: A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development. 2006, 20 (24): 3407-3425. 10.1101/gad.1476406.
Article
Google Scholar
Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ: Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Research. 2008, 18 (4): 571-584. 10.1101/gr.6897308.
Article
PubMed Central
PubMed
Google Scholar
Yao YY, Guo GG, Ni ZF, Sunkar R, Du JK, Zhu JK, Sun QX: Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology. 2007, 8 (6): 96-108. 10.1186/gb-2007-8-6-r96.
Article
Google Scholar
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J: Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010, 62 (6): 960-976.
PubMed
Google Scholar
Qiu D, Pan X, Wilson IW, Ketchum REB, Li F, Liu M, Teng W, Zhang BH: High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene. 2009, 436 (1-2): 37-44. 10.1016/j.gene.2009.01.006.
Article
PubMed
Google Scholar
Schwach F, Moxon S, Moulton V, Dalmay T: Deciphering the diversity of small RNAs in plants: the long and short of it. Brief Funct Genomic Proteomic. 2009, 8: 472-481. 10.1093/bfgp/elp024.
Article
PubMed
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36: 154-158. 10.1093/nar/gkn221.
Article
Google Scholar
Ro Seungil, Park Chanjae, Jin Jingling, Sanders Kenton, Yan Wei: A PCR-based Method for Detection and Quantification of Small RNAs. Biochem Biophys Res Commun. 2006, 351 (3): 756-763. 10.1016/j.bbrc.2006.10.105.
Article
PubMed Central
PubMed
Google Scholar
Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T: A uniform system for microRNA annotation. RNA. 2003, 9 (3): 277-279. 10.1261/rna.2183803.
Article
PubMed Central
PubMed
Google Scholar
Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK: Criteria for annotation of plant microRNAs. Plant Cell. 2008, 20: 3186-3190. 10.1105/tpc.108.064311.
Article
PubMed Central
PubMed
Google Scholar
Axtell MJ: Evolution of microRNAs and their targets: Are all microRNAs biologically relevant?. Biochim Biophys Acta. 2008, 1779: 725-727.
Article
PubMed
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136 (2): 215-33. 10.1016/j.cell.2009.01.002.
Article
PubMed Central
PubMed
Google Scholar
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Archer-Evans S, Vance V, Sundaresan V: Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res. 2005, 15: 78-91. 10.1101/gr.2908205.
Article
PubMed Central
PubMed
Google Scholar
Sunkar R, Girke T, Zhu JK: Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res. 2005, 33: 4443-4454. 10.1093/nar/gki758.
Article
PubMed Central
PubMed
Google Scholar
Jin W, Li N, Zhang B, Wu F, Li W: Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res. 2008, 121: 351-355. 10.1007/s10265-007-0139-3.
Article
PubMed
Google Scholar
Carra A, Mica E, Gambino G, Pindo M, Moser C: Cloning and characterization of small non-coding RNAs from grape. Plant J. 2009, 59: 750-763. 10.1111/j.1365-313X.2009.03906.x.
Article
PubMed
Google Scholar
Lu S, Sun YH, Chiang VL: Stress-responsive microRNAs in Populus. Plant J. 2008, 55: 131-151. 10.1111/j.1365-313X.2008.03497.x.
Article
PubMed
Google Scholar
Rubio-Somoza I, Weigel D: MicroRNA networks and developmental plasticity in plants. Trends Plant Sci. 2011, 16 (5): 258-264. 10.1016/j.tplants.2011.03.001.
Article
PubMed
Google Scholar
Liu Q, Chen YQ: Insights into the mechanism of plant development: Interactions of miRNAs pathway with phytohormone response. Biochemical and Biophysical Research Communications. 2009, 384: 1-5. 10.1016/j.bbrc.2009.04.028.
Article
PubMed
Google Scholar
Schaffer AA, Petreikov M: Sucrose-to-Starch Metabolism in Tomato Fruit Undergoing Transient Starch Accumulation. Plant Physiol. 1997, 113 (3): 739-746.
PubMed Central
PubMed
Google Scholar
Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT: Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res. 2008, 36: 141-151. 10.1093/nar/gkn705.
Article
Google Scholar
Elitzur T, Vrebalov J, Giovannoni JJ, Goldschmidt EE, Friedman H: The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. J Exp Bot. 2010, 61 (5): 1523-1535. 10.1093/jxb/erq017.
Article
PubMed Central
PubMed
Google Scholar
Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB: A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 2006, 38: 948-952. 10.1038/ng1841.
Article
PubMed
Google Scholar
Adams-Phillips L, Barry C, Kannan P, Leclercq J, Bouzayen M, Giovannoni J: Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol Biol. 2004, 54: 387-404.
Article
PubMed
Google Scholar
Bleecker AB, Kende H: Ethylene: A gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 2000, 16: 1-18. 10.1146/annurev.cellbio.16.1.1.
Article
PubMed
Google Scholar
Guo H, Ecker JR: The ethylene signaling pathway: New insights. Curr Opin Plant Biol. 2004, 7: 40-49. 10.1016/j.pbi.2003.11.011.
Article
PubMed
Google Scholar
Kendrick MD, Chang C: Ethylene signaling: New levels of complexity and regulation. Curr Opin Plant Biol. 2008, 11: 479-485. 10.1016/j.pbi.2008.06.011.
Article
PubMed Central
PubMed
Google Scholar
Zhu Z, Guo H: Genetic basis of ethylene perception and signal transduction in Arabidopsis. J Integr Plant Biol. 2008, 50: 808-815. 10.1111/j.1744-7909.2008.00710.x.
Article
PubMed
Google Scholar
Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q: Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 2010, 10: 123-134. 10.1186/1471-2229-10-123.
Article
PubMed Central
PubMed
Google Scholar
Barakat A, Wall PK, Diloreto S, Depamphilis CW, Carlson JE: Conservation and divergence of microRNAs in Populus. BMC Genomics. 2007, 8: 481-496. 10.1186/1471-2164-8-481.
Article
PubMed Central
PubMed
Google Scholar
Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T: High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics. 2008, 9: 593-602. 10.1186/1471-2164-9-593.
Article
PubMed Central
PubMed
Google Scholar
Herr AJ: Pathways through the small RNA world of plants. FEBS Lett. 2005, 579: 5879-5888. 10.1016/j.febslet.2005.08.040.
Article
PubMed
Google Scholar
Vazquez F: Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci. 2006, 11: 460-468. 10.1016/j.tplants.2006.07.006.
Article
PubMed
Google Scholar
Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC: Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet. 2004, 36: 1282-1290. 10.1038/ng1478.
Article
PubMed
Google Scholar
Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan K, Moulton V, Dalmay T: Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J. 2011, 67 (2): 232-246. 10.1111/j.1365-313X.2011.04586.x.
Article
PubMed
Google Scholar
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction of plant microRNA targets. Cell. 2002, 110: 513-520. 10.1016/S0092-8674(02)00863-2.
Article
PubMed
Google Scholar
Floyd SK, Bowman JL: Gene regulation: ancient microRNA target sequences in plants. Nature. 2004, 435: 441-445.
Google Scholar
Aukerman MJ, Sakai H: Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 2003, 15: 2730-2741. 10.1105/tpc.016238.
Article
PubMed Central
PubMed
Google Scholar
Chen X: A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2003, 1: 11-17.
Google Scholar
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D: Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005, 8: 517-527. 10.1016/j.devcel.2005.01.018.
Article
PubMed
Google Scholar
Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P: The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J. 2007, 49: 683-693. 10.1111/j.1365-313X.2006.02983.x.
Article
PubMed
Google Scholar
Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crete P, Voinnet O, Robaglia C: Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell. 2009, 21: 1762-1768. 10.1105/tpc.108.063412.
Article
PubMed Central
PubMed
Google Scholar
Real MD, Company P, García-Agustín P, Bennett AB, González-Bosch C: Characterization of tomato endo-beta -1, 4- glucanase Cel1 protein in fruit during ripening and after fungal infection. Planta. 2004, 220 (1): 80-86. 10.1007/s00425-004-1321-7.
Article
PubMed
Google Scholar
Flors V, Leyva Mde L, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C: Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Plant J. 2007, 52 (6): 1027-40. 10.1111/j.1365-313X.2007.03299.x.
Article
PubMed
Google Scholar
Ordaz-Ortiz JJ, Marcus SE, Knox JP: Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol Plant. 2009, 2 (5): 910-21. 10.1093/mp/ssp049.
Article
PubMed
Google Scholar
Marín-Rodríguez MC, Orchard J, Seymour GB: Pectate lyases, cell wall degradation and fruit softening. J Exp Bot. 2002, 53 (377): 2115-2119. 10.1093/jxb/erf089.
Article
PubMed
Google Scholar
Rodoni L, Casadei N, Concellón A, Chaves Alicia AR, Vicente AR: Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. J Agric Food Chem. 2010, 58 (1): 594-599. 10.1021/jf9029145.
Article
PubMed
Google Scholar
Moctezuma E, Smith DL, Gross KC: Antisense suppression of a beta-galactosidase gene (TB G6) in tomato increases fruit cracking. J Exp Bot. 2003, 54 (390): 2025-2033. 10.1093/jxb/erg214.
Article
PubMed
Google Scholar
Marano MR, Carrillo N: Constitutive transcription and stable RNA accumulation in plastids during the conversion of chloroplasts to chromoplasts in ripening tomato fruits. Plant Physiol. 1992, 100: 1103-1113. 10.1104/pp.100.3.1103.
Article
PubMed Central
PubMed
Google Scholar
Kahla US, Bock R: Plastid transcriptomics and translatomics of tomato fruit development chloroplast-to- chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell. 2008, 20: 856-874. 10.1105/tpc.107.055202.
Article
Google Scholar
Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, Nath P: Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnol Adv. 2010, 28 (1): 94-107. 10.1016/j.biotechadv.2009.10.002.
Article
PubMed
Google Scholar
Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY, Zhou H, Qu LH, Chen YQ: Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett. 2009, 583: 723-728. 10.1016/j.febslet.2009.01.020.
Article
PubMed
Google Scholar
Wang X, Kong H, Ma H: F-box proteins regulate ethylene signaling and more. Genes Dev. 2009, 23 (4): 391-396. 10.1101/gad.1781609.
Article
PubMed
Google Scholar
Qiao H, Chang KN, Yazaki J, Ecker JR: Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 2009, 23 (4): 512-521. 10.1101/gad.1765709.
Article
PubMed Central
PubMed
Google Scholar
Benavente LM, Alonso JM: Molecular mechanisms of ethylene signaling in Arabidopsis. Mol Biosyst. 2006, 2 (3-4): 165-73. 10.1039/b513874d.
Article
PubMed
Google Scholar
Zhu Z, Guo H: Genetic basis of ethylene perception and signal transduction in Arabidopsis. J Integr Plant Biol. 2008, 50 (7): 808-815. 10.1111/j.1744-7909.2008.00710.x.
Article
PubMed
Google Scholar
Frankowski K, Kesy J, Kotarba W, Kopcewicz J: Ethylene signal transduction pathway. Postepy Biochem. 2008, 54 (1): 99-106.
PubMed
Google Scholar
Zhong S, Lin Z, Grierson D: Tomato ethylene receptor-CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. J Exp Bot. 2008, 59 (4): 965-972. 10.1093/jxb/ern021.
Article
PubMed
Google Scholar
Adams-Phillips L, Barry C, Kannan P, Leclercq J, Bouzayen M, Giovannoni J: Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol Biol. 2004, 54 (3): 387-404.
Article
PubMed
Google Scholar
Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latché A, Giovannoni JJ, Pech JC, Bouzayen M: LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol. 2002, 130: 1132-1142. 10.1104/pp.009415.
Article
PubMed Central
PubMed
Google Scholar
Zegzouti H, Jones B, Frasse P, Marty C, Maitre B, Latch A, Pech JC, Bouzayen M: Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-relatedgenes isolated by differential display. Plant J. 1999, 18 (6): 589-600. 10.1046/j.1365-313x.1999.00483.x.
Article
PubMed
Google Scholar
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33: 179-187. 10.1093/nar/gni178.
Article
Google Scholar
Tang F, Hajkova P, Barton SC, Lao K, Surani MA: MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res. 2006, 34: 9-15. 10.1093/nar/gnj009.
Article
Google Scholar
Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007, 3: 12-23. 10.1186/1746-4811-3-12.
Article
PubMed Central
PubMed
Google Scholar
Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM: Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap. BMC Plant Biology. 2010, 10: 159-173. 10.1186/1471-2229-10-159.
Article
PubMed Central
PubMed
Google Scholar