Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007, 447: 799-816. 10.1038/nature05874.
Article
CAS
PubMed
Google Scholar
Myers RM, Stamatoyannopoulos J, Snyder M, Dunham I, Hardison RC, Bernstein BE, Gingeras TR, Kent WJ, Birney E, Wold B, Crawford GE: A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 2011, 9: 10.1371/journal.pbio.1001046
Google Scholar
Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An Encyclopedia of Human DNA Elements (NCP000). Nature. 2012, 489 (7414): 57-74. 10.1038/nature11247.
Article
Google Scholar
Arthur JW, Wilkins MR: Using proteomics to mine genome sequences. J Proteome Res. 2004, 3: 393-402. 10.1021/pr034056e.
Article
CAS
PubMed
Google Scholar
Chaerkady R, Kelkar DS, Muthusamy B, Kandasamy K, Dwivedi SB, Sahasrabuddhe NA, Kim MS, Renuse S, Pinto SM, Sharma R: A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry. Genome Res. 2011, 21 (11): 1872-1881. 10.1101/gr.127951.111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Choudhary JS, Blackstock WP, Creasy DM, Cottrell JS: Interrogating the human genome using uninterpreted mass spectrometry data. Proteomics. 2001, 1: 651-667. 10.1002/1615-9861(200104)1:5<651::AID-PROT651>3.0.CO;2-N.
Article
CAS
PubMed
Google Scholar
Giddings MC, Shah AA, Gesteland R, Moore B: Genome-based peptide fingerprint scanning. Proc Natl Acad Sci USA. 2003, 100: 20-25. 10.1073/pnas.0136893100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jaffe JD, Berg HC, Church GM: Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics. 2004, 4: 59-77. 10.1002/pmic.200300511.
Article
CAS
PubMed
Google Scholar
Brosch M, Saunders GI, Frankish A, Collins MO, Yu L, Wright J, Verstraten R, Adams DJ, Harrow J, Choudhary JS, Hubbard T: Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and “resurrected” pseudogenes in the mouse genome. Genome Res. 2011, 21: 756-767. 10.1101/gr.114272.110.
Article
PubMed Central
CAS
PubMed
Google Scholar
Castellana NE, Payne SH, Shen Z, Stanke M, Bafna V, Briggs SP: Discovery and revision of Arabidopsis genes by proteogenomics. ProcNat Acad Sci U S A. 2008, 105: 21034-21038. 10.1073/pnas.0811066106.
Article
CAS
Google Scholar
Fermin D, Allen BB, Blackwell TW, Menon R, Adamski M, Xu Y, Ulintz P, Omenn GS, States DJ: Novel gene and gene model detection using a whole genome open reading frame analysis in proteomics. Genome Biol. 2006, 7: R35-10.1186/gb-2006-7-4-r35.
Article
PubMed Central
PubMed
Google Scholar
Kelkar DS, Kumar D, Kumar P, Balakrishnan L, Muthusamy B, Yadav AK, Shrivastava P, Marimuthu A, Anand S, Sundaram H: Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry. Mol Cell Proteomics. 2011, MCP 10 (12): M111 011627-
Article
PubMed
Google Scholar
Kuster B, Mortensen P, Andersen JS, Mann M: Mass spectrometry allows direct identification of proteins in large genomes. Proteomics. 2001, 1: 641-650. 10.1002/1615-9861(200104)1:5<641::AID-PROT641>3.0.CO;2-R.
Article
CAS
PubMed
Google Scholar
Menon R, Zhang Q, Zhang Y, Fermin D, Bardeesy N, DePinho RA, Lu C, Hanash SM, Omenn GS, States DJ: Identification of novel alternative splice isoforms of circulating proteins in a mouse model of human pancreatic cancer. Cancer Res. 2009, 69: 300-309. 10.1158/0008-5472.CAN-08-2145.
Article
PubMed Central
CAS
PubMed
Google Scholar
Merrihew GE, Davis C, Ewing B, Williams G, Kall L, Frewen BE, Noble WS, Green P, Thomas JH, MacCoss MJ: Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations. Genome Res. 2008, 18: 1660-1669. 10.1101/gr.077644.108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oyama M, Kozuka-Hata H, Suzuki Y, Semba K, Yamamoto T, Sugano S: Diversity of translation start sites may define increased complexity of the human short ORFeome. Mol Cell Proteomics. 2007, 6: 1000-1006. 10.1074/mcp.M600297-MCP200.
Article
CAS
PubMed
Google Scholar
Tanner S, Shen Z, Ng J, Florea L, Guigo R, Briggs SP, Bafna V: Improving gene annotation using peptide mass spectrometry. Genome Res. 2007, 17: 231-239. 10.1101/gr.5646507.
Article
PubMed Central
CAS
PubMed
Google Scholar
Washburn MP, Wolters D, Yates JR: Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001, 19: 242-247. 10.1038/85686.
Article
CAS
PubMed
Google Scholar
Bafna V, Edwards N: SCOPE: a probabilistic model for scoring tandem mass spectra against a peptide database. Bioinformatics. 2001, 17 (Suppl 1): S13-21. 10.1093/bioinformatics/17.suppl_1.S13.
Article
PubMed
Google Scholar
Craig R, Beavis RC: A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom. 2003, 17: 2310-2316. 10.1002/rcm.1198.
Article
CAS
PubMed
Google Scholar
Eng JK, McCormack AL, Yates JRI: An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J Am Soc Mass Spectrom. 1994, 5: 976-989. 10.1016/1044-0305(94)80016-2.
Article
CAS
PubMed
Google Scholar
Khatun J, Hamlett E, Giddings MC: Incorporating sequence information into the scoring function: a hidden Markov model for improved peptide identification. Bioinformatics. 2008, 24: 674-681. 10.1093/bioinformatics/btn011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tabb DL, Fernando CG, Chambers MC: MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res. 2007, 6: 654-661. 10.1021/pr0604054.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wan YH, Yang A, Chen T: PepHMM: a hidden Markov model based scoring function for mass spectrometry database search. Anal Chem. 2006, 78: 432-437. 10.1021/ac051319a.
Article
CAS
PubMed
Google Scholar
Zhang Z, Sun S, Zhu X, Chang S, Liu X, Yu C, Bu D, Chen R: A novel scoring schema for peptide identification by searching protein sequence databases using tandem mass spectrometry data. BMC Bioinformatics. 2006, 7: 222-10.1186/1471-2105-7-222.
Article
PubMed Central
PubMed
Google Scholar
Fischer B, Roth V, Roos F, Grossmann J, Baginsky S, Widmayer P, Gruissem W, Buhmann JM: NovoHMM: a hidden Markov model for de novo peptide sequencing. Anal Chem. 2005, 77: 7265-7273. 10.1021/ac0508853.
Article
CAS
PubMed
Google Scholar
Taylor JA, Johnson RS: Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem. 2001, 73: 2594-2604. 10.1021/ac001196o.
Article
CAS
PubMed
Google Scholar
Oyama M, Itagaki C, Hata H, Suzuki Y, Izumi T, Natsume T, Isobe T, Sugano S: Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs. Genome Res. 2004, 14: 2048-2052. 10.1101/gr.2384604.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bitton DA, Smith DL, Connolly Y, Scutt PJ, Miller CJ: An integrated mass-spectrometry pipeline identifies novel protein coding-regions in the human genome. PLoS One. 2010, 5: e8949-10.1371/journal.pone.0008949.
Article
PubMed Central
PubMed
Google Scholar
Renuse S, Chaerkady R, Pandey A: Proteogenomics. Proteomics. 2011, 11: 620-630. 10.1002/pmic.201000615.
Article
CAS
PubMed
Google Scholar
Tran JC, Doucette AA: Gel-eluted liquid fraction entrapment electrophoresis: an electrophoretic method for broad molecular weight range proteome separation. Anal Chem. 2008, 80: 1568-1573. 10.1021/ac702197w.
Article
CAS
PubMed
Google Scholar
Wisniewski JR, Zougman A, Nagaraj N, Mann M: Universal sample preparation method for proteome analysis. Nat Methods. 2009, 6: 359-362. 10.1038/nmeth.1322.
Article
CAS
PubMed
Google Scholar
Yu Y, Xie L, Gunawardena PH, Khatun J, Maier C, Leerkes M, Giddings M, Chen X: GOFAST: An integrated approach for efficient and comprehensive membrane proteome analysis. Anal Chem. 2012, 84: 9008-9014.
CAS
PubMed
Google Scholar
Vogel C, Marcotte EM: Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nat Protocols. 2008, 3: 1444-1451. 10.1038/nprot.2008.132.
Article
CAS
PubMed
Google Scholar
Yamashita R, Suzuki Y, Nakai K, Sugano S: Small open reading frames in 5′ untranslated regions of mRnas. Comptes Rendus Biologies. 2003, 326: 987-991. 10.1016/j.crvi.2003.09.028.
Article
CAS
PubMed
Google Scholar
Morris DR, Geballe AP: Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol. 2000, 20: 8635-8642. 10.1128/MCB.20.23.8635-8642.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kochetov AV, Ahmad S, Ivanisenko V, Volkova OA, Kolchanov NA, Sarai A: uORFs, reinitiation and alternative translation start sites in human mRNAs. FEBS Lett. 2008, 582: 1293-1297. 10.1016/j.febslet.2008.03.014.
Article
CAS
PubMed
Google Scholar
Ge X, Jung YC, Wu Q, Kibbe WA, Wang SM: Annotating nonspecific SAGE tags with microarray data. Genomics. 2006, 87: 173-180. 10.1016/j.ygeno.2005.08.014.
Article
CAS
PubMed
Google Scholar
Balázs B, Hui J, Jainab K, Emily W, Brian R, Will G, Anshul K, Gunawardena HP, Yanbao Y, Ling X: Long non-coding RNAs are rarely translated in two human cell lines. Genome research. 2010, 22 (9): 646-1657.
Google Scholar
Omenn GS, Yocum AK, Menon R: Alternative splice variants, a new class of protein cancer biomarker candidates: findings in pancreatic cancer and breast cancer with systems biology implications. Dis Markers. 2010, 28: 241-251.
Article
PubMed Central
CAS
PubMed
Google Scholar
Menon R, Omenn GS: Proteomic characterization of novel alternative splice variant proteins in human epidermal growth factor receptor 2/neu-induced breast cancers. Cancer Res. 2010, 70: 3440-3449. 10.1158/0008-5472.CAN-09-2631.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL: Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010, 464: 999-1005. 10.1038/nature08989.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song XC, Fu G, Yang X, Jiang Z, Wang Y, Zhou GW: Protein expression profiling of breast cancer cells by dissociable antibody microarray (DAMA) staining. Mol Cell Proteomics. 2008, 7: 163-169.
Article
CAS
PubMed
Google Scholar
Cox B, Emili A: Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat Protocols. 2006, 1: 1872-1878. 10.1038/nprot.2006.273.
Article
CAS
PubMed
Google Scholar
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protocols. 2006, 1: 2856-2860.
Article
CAS
PubMed
Google Scholar
Fenyo D, Beavis RC: A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem. 2003, 75: 768-774. 10.1021/ac0258709.
Article
PubMed
Google Scholar
Kall L, Storey JD, MacCoss MJ, Noble WS: Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J Proteome Res. 2008, 7: 29-34. 10.1021/pr700600n.
Article
PubMed
Google Scholar