Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SF, Kuruppu S, Fung K, Hedges SB, Richardson MK, Hodgson WC, Ignjatovic V, Summerhayes R, Kochva E: Early evolution of the venom system in lizards and snakes. Nature. 2006, 439: 584-588. 10.1038/nature04328.
CAS
PubMed
Google Scholar
Fry BG, Casewell NR, Wüster W, Vidal N, Young B, Jackson TN: The structural and functional diversification of the Toxicofera reptile venom system. Toxicon. 2012, 60: 434-448. 10.1016/j.toxicon.2012.02.013.
CAS
PubMed
Google Scholar
Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MA, Vanderschoot K, van den Berge I, van Atten M, Burgerhout E, Beck A, Mirtschin PJ, Kochva E, Witte F, Fry BG, Woods AE, Richardson MK: Evolutionary origin and development of snake fangs. Nature. 2008, 454: 630-633. 10.1038/nature07178.
CAS
PubMed
Google Scholar
Greene HW: Dietary correlates of the origin and radiation of snakes. Am Zool. 1983, 23: 431-441.
Google Scholar
Daltry JC, Wüster W, Thorpe RS: Diet and snake venom evolution. Nature. 1996, 379: 537-540. 10.1038/379537a0.
CAS
PubMed
Google Scholar
Gibbs HL, Mackessy SP: Functional basis of a molecular adaptation: prey-specific toxic effects of venom from Sistrurus rattlesnakes. Toxicon. 2008, 53: 672-679.
Google Scholar
Barlow A, Pook CE, Harrison RA, Wüster W: Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc Biol Sci. 2009, 276: 2443-2449. 10.1098/rspb.2009.0048.
PubMed Central
CAS
PubMed
Google Scholar
Vidal N, Hedges SB: The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C Rendus Biol. 2009, 332: 129-139. 10.1016/j.crvi.2008.07.010.
CAS
Google Scholar
Vidal N, Rage J-C, Couloux A, Hedges SB: Snakes (Serpentes). The Timetree of Life. Edited by: Hedges SB, Kumar S. 2009, Oxford Univ. Press, 390-397.
Google Scholar
Redi F: Osservazioni Intorno alle Vipere. Edited by: All’Insegna Della Stella F. 1664, a digitalized version is freely accessible in http://archive.org/details/osservazioniint00redigoog
Google Scholar
Fontana F: Traité sur le vénin de la vipere, sur les poisons amaricains, sur le laurier-cerise et sur quelques autres poisons végetaux. 1781, Florence: Gibelin
Google Scholar
Hawgood BJ: Abbé Felice Fontana (1730–1805): founder of modern toxinology. Toxicon. 1995, 33: 591-601. 10.1016/0041-0101(95)00006-8.
CAS
PubMed
Google Scholar
Calvete JJ: Venomics, what else?. Toxicon. 2012, 60: 427-433. 10.1016/j.toxicon.2012.05.012.
CAS
PubMed
Google Scholar
de Azevedo ILM J, Diniz MRV, Ho PL: Venom gland transcriptomic analysis. Animal Toxins: State of the Art. Perspectives in Health and Biotechnology. Edited by: De Lima ME, Pimenta AMC, Martin-Euclaire MF, Zingali RB, Rochat H. 2009, Belo Horizonte: Editora UFMG, 693-713.
Google Scholar
Durban J, Juárez P, Angulo Y, Lomonte B, Flores-Diaz M, Alape-Girón A, Sasa M, Sanz L, Gutiérrez JM, Dopazo J, Conesa A, Calvete JJ: Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing. BMC Genomics. 2011, 12: 259-10.1186/1471-2164-12-259.
PubMed Central
CAS
PubMed
Google Scholar
Rokyta DR, Wray KP, Lemmon AR, Lemmon EM, Caudle SB: A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. Toxicon. 2011, 57: 657-671. 10.1016/j.toxicon.2011.01.008.
CAS
PubMed
Google Scholar
Calvete JJ: Proteomic tools against the neglected pathology of snake bite envenoming. Exp Rev Proteomics. 2011, 8: 739-758. 10.1586/epr.11.61.
CAS
Google Scholar
Calvete JJ: Snake venomics: from the inventory of toxins to biology. Toxicon. 2013, in press
Google Scholar
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC: The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009, 10: 483-511. 10.1146/annurev.genom.9.081307.164356.
CAS
PubMed
Google Scholar
Fry BG, Scheib H, De LM, Junqueira De Azevedo I, Silva DA, Casewell NR: Novel transcripts in the maxillary venom glands of advanced snakes. Toxicon. 2012, 59: 696-708. 10.1016/j.toxicon.2012.03.005.
CAS
PubMed
Google Scholar
Chippaux JP, Williams V, White J: Snake venom variability: methods of study, results, and interpretation. Toxicon. 1991, 29: 1279-1303. 10.1016/0041-0101(91)90116-9.
CAS
PubMed
Google Scholar
Gibbs HL, Sanz L, Calvete JJ: Snake population venomics: proteomics-based analyses of individual variation reveals significant gene regulation effects on venom protein expression in Sistrurus rattlesnakes. J Mol Evol. 2009, 68: 113-125. 10.1007/s00239-008-9186-1.
CAS
PubMed
Google Scholar
Gibbs HL, Sanz L, Chiucchi JE, Farrell TM, Calvete JJ: Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). J Proteomics. 2011, 74: 2169-2179. 10.1016/j.jprot.2011.06.013.
CAS
PubMed
Google Scholar
Chiucchi JE, Gibbs HL: Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol. 2010, 19: 5345-5358. 10.1111/j.1365-294X.2010.04860.x.
PubMed
Google Scholar
Mackessy SP: Venom ontogeny in the Pacific rattlesnakes, Crotalus viridis helleri and C. viridis oreganus. Copeia. 1988, 1988: 92-101. 10.2307/1445927.
Google Scholar
Guércio RAP, Shevchenko A, Shevchenko A, López-Lozano JL, Paba J, Sousa MV, Ricart CAO: Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox. Proteome Sci. 2006, 4: 11-10.1186/1477-5956-4-11.
PubMed Central
PubMed
Google Scholar
Mackessy SP, Sixberry NM, Heyborne WH, Fritts T: Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Toxicon. 2006, 47: 537-548. 10.1016/j.toxicon.2006.01.007.
CAS
PubMed
Google Scholar
Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, Calvete JJ: Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res. 2008, 7: 3556-3571. 10.1021/pr800332p.
PubMed
Google Scholar
Calvete JJ, Sanz L, Cid P, De La Torre P, Flores-Diaz M, Dos Santos MC, Borges A, Bremo A, Angulo Y, Lomonte B, Alape-Girón A, Gutiérrez JM: Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. J Proteome Res. 2010, 9: 528-544. 10.1021/pr9008749.
CAS
PubMed
Google Scholar
Zelanis A, Travaglia-Cardoso SR, Furtado MFD: Ontogenetic changes in Bothrops insularis (Serpentes: Viperidae) snake venom and its biological implications. South Am J Herpetol. 2008, 3: 45-50.
Google Scholar
Zelanis A, Tashima AK, Pinto AF, Leme AF, Stuginski DR, Furtado MF, Sherman NE, Ho PL, Fox JW, Serrano SM: Bothrops jararaca venom proteome rearrangement upon neonate to adult transition. Proteomics. 2011, 11: 4218-4228. 10.1002/pmic.201100287.
CAS
PubMed
Google Scholar
Madrigal M, Sanz L, Flores-Diaz M, Sasa M, Núñez V, Alape-Girón A, Calvete JJ: Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of L. stenophrys and comparative proteomics of the venoms of adult L. melanocephala and L. acrochorda. J Proteomics. in press
Andrade DV, Abe AS: Relationship of venom ontogeny and diet in Bothrops. Herpetologica. 1999, 55: 200-204.
Google Scholar
Wüster W, Ferguson JE, Quijada-Mascareñas JA, Pook CE, Salomão MG, Thorpe RS: Tracing an invasion: landbridges, refugia and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol Ecol. 2005, 14: 1095-1108. 10.1111/j.1365-294X.2005.02471.x.
PubMed
Google Scholar
Gutiérrez JM, Dos Santos MC, Furtado MF, Rojas G: Biochemical and pharmacological similarities between the venoms of newborn Crotalus durissus durissus and adult Crotalus durissus terrificus rattlesnakes. Toxicon. 1991, 29: 1273-1277. 10.1016/0041-0101(91)90201-2.
PubMed
Google Scholar
Saravia P, Rojas E, Arce V, Guevara C, López JC, Chaves E, Velásquez R, Rojas G, Gutiérrez JM: Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: Pathophysiological and therapeutic implications. Rev Biol Trop. 2002, 50: 337-346.
PubMed
Google Scholar
Mackessy SP: Venom composition in rattlesnakes: trends and biological significance. The Biology of Rattlesnakes. Edited by: Hayes WK, Beaman KR, Cardwell MD, Bush SP. 2008, Loma Linda, California: Loma Linda University Press, 495-510.
Google Scholar
Mackessy SP: Evolutionary trends in venom composition in the Western Rattlesnakes (Crotalus viridis sensu lato): Toxicity vs. tenderizers. Toxicon. 2010, 55: 1463-1474. 10.1016/j.toxicon.2010.02.028.
CAS
PubMed
Google Scholar
McCue MD: Cost of producing venom in three North American pitviper species. Copeia. 2006, 2006: 818-825. 10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2.
Google Scholar
Bon C: Multicomponent neurotoxic phospholipases A2. Venom phospholipase A2 enzymes: structure, function and mechanism. Edited by: Kini RM. 1997, Chichester: Wiley, 269-286.
Google Scholar
Faure G, Xu H, Saul FA: Crystal structure of crotoxin reveals key residues involved in the stability and toxicity of this potent heterodimeric β-neurotoxin. J Mol Biol. 2011, 412: 176-191. 10.1016/j.jmb.2011.07.027.
CAS
PubMed
Google Scholar
Faure G, Saul F: Crystallographic characterization of functional sites of crotoxin and ammodytoxin, potent β-neurotoxins from Viperidae venom. Toxicon. 2012, 60: 531-538. 10.1016/j.toxicon.2012.05.009.
CAS
PubMed
Google Scholar
Gutiérrez JM: Clinical toxicology of snakebite in Central America. Handbook of clinical toxicology of animal venoms and poisons. Edited by: Meier J, White J. 1995, Boca Raton, Florida: CRC, 645-665.
Google Scholar
Massey DJ, Calvete JJ, Sánchez EE, Sanz L, Richards K, Curtis R, Boesen K: Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. J Proteomics. 2012, 75: 2576-2587. 10.1016/j.jprot.2012.02.035.
CAS
PubMed
Google Scholar
Glenn JL, Sraight RC, Wolfe MC, Hardy DL: Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties. Toxicon. 1983, 21: 119-130.
CAS
PubMed
Google Scholar
Glenn JL, Sraight RC: Intergradation of two different venom populations of the Mojave rattlesnake (Crotalus scutulatus scutulatus) in Arizona. Toxicon. 1989, 27: 411-418. 10.1016/0041-0101(89)90203-1.
CAS
PubMed
Google Scholar
Gutiérrez JM, Lomonte B, León G, Alape-Girón A, Flores-Díaz M, Sanz L, Angulo Y, Calvete JJ: Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics. 2009, 72: 165-182. 10.1016/j.jprot.2009.01.008.
PubMed
Google Scholar
Williams DJ, Gutiérrez JM, Calvete JJ, Wüster W, Ratanabanangkoon K, Paiva O, Brown NI, Casewell NR, Harrison RA, Rowley PD, O'Shea M, Jensen SD, Winkel KD, Warrell DA: Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics. 2011, 74: 1735-1767. 10.1016/j.jprot.2011.05.027.
CAS
PubMed
Google Scholar
Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM: Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 2007, 8: R143-10.1186/gb-2007-8-7-r143.
PubMed Central
PubMed
Google Scholar
Biémont C, Vieira C: Junk DNA as an evolutionary force. Nature. 2006, 443: 521-524. 10.1038/443521a.
PubMed
Google Scholar
Castoe TA, Hall KT, Guibotsy Mboulas ML, Gu W, de Koning AP, Fox SE, Poole AW, Vemulapalli V, Daza JM, Mockler T, Smith EN, Feschotte C, Pollock DD: Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol. 2011, 3: 641-653. 10.1093/gbe/evr043.
PubMed Central
CAS
PubMed
Google Scholar
Junqueira-de-Azevedo ILM, Ho PL: A survey of gene expression and diversity in the venom glands of the pit viper snake Bothrops insularis through the generation of expressed sequence tags (ESTs). Gene. 2002, 299: 279-291. 10.1016/S0378-1119(02)01080-6.
CAS
Google Scholar
Junqueira-de-Azevedo ILM, Ching ATC, Carvalho E, Faria F, Nishiyama MY, Ho PL, Diniz MRV: Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin repertoire evolution. Genetics. 2006, 172: 877-889.
Google Scholar
Ching AT, Rocha MM, Leme AFP, Pimenta DC, Furtado MFD, Serrano SM, Ho PL, de Azevedo IL J: Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett. 2006, 580: 4417-4422. 10.1016/j.febslet.2006.07.010.
CAS
PubMed
Google Scholar
Kordis D, Gubenšek F: Bov-B long interspersed repeated DNA (LINE) sequences are present in Vipera ammodytes phospholipase A2 genes and in genomes of Viperidae snakes. Eur J Biochem. 1997, 246: 772-779. 10.1111/j.1432-1033.1997.00772.x.
CAS
PubMed
Google Scholar
Kordis D, Gubenšek F: The Bov-B lines found in Vipera ammodytes toxic PLA2 genes are widespread in snake genomes. Toxicon. 1998, 36: 1585-1590. 10.1016/S0041-0101(98)00150-0.
CAS
PubMed
Google Scholar
Ikeda N, Chijiwa T, Matsubara K, Oda-Ueda N, Hattori S, Matsuda Y, Ohno M: Unique structural characteristics and evolution of a cluster of venom phospholipase A2 isozyme genes of Protobothrops flavoviridis snake. Gene. 2010, 461: 15-25. 10.1016/j.gene.2010.04.001.
CAS
PubMed
Google Scholar
Nobuhisa I, Ogawa T, Deshimaru M, Chijiwa T, Nakashima K-I, Chuman Y, Shimohigashi Y, Fukumaki Y, Hattori S, Ohno M: Retrotransposable CR1-like elements in Crotalinae snake genomes. Toxicon. 1998, 36: 915-920. 10.1016/S0041-0101(97)00104-9.
CAS
PubMed
Google Scholar
Sanz L, Harrison RA, Calvete JJ: First draft of the genomic organization of a PIII-SVMP gene. Toxicon. 2012, 60: 455-469. 10.1016/j.toxicon.2012.04.331.
CAS
PubMed
Google Scholar
van de Lagemaat LN, Landry JR, Mager DL, Medstrand P: Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 2003, 19: 530-536. 10.1016/j.tig.2003.08.004.
CAS
PubMed
Google Scholar
Medstrand P, Van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL: Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenet Genome Res. 2005, 110: 342-345. 10.1159/000084966.
CAS
PubMed
Google Scholar
Piskurek O, Austin CC, Okada N: Sauria SINEs: novel short interspersed transposable elements that are widespread in reptile genomes. J Mol Evol. 2006, 62: 630-644. 10.1007/s00239-005-0201-5.
CAS
PubMed
Google Scholar
Piskurek O, Okada N: Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci USA. 2007, 104: 12046-12051. 10.1073/pnas.0700531104.
PubMed Central
CAS
PubMed
Google Scholar
Oshima K, Okada N: SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res. 2005, 110: 475-490. 10.1159/000084981.
Google Scholar
Luan DD, Korman MH, Jakubczak JL, Eickbush TH: Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993, 72: 595-605. 10.1016/0092-8674(93)90078-5.
CAS
PubMed
Google Scholar
Deininger PL, Batzer MA: Mammalian retroelements. Genome Res. 2002, 12: 1455-1465. 10.1101/gr.282402.
CAS
PubMed
Google Scholar
Piskurek O, Nishihara H, Okada N: The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene. 2009, 441: 111-118. 10.1016/j.gene.2008.11.030.
CAS
PubMed
Google Scholar
International Chicken Genome Sequencing Consortium: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004, 432: 695-716. 10.1038/nature03154.
Google Scholar
Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD, Ray DA, Boissinot S, Shedlock AM, Botka C, Castoe TA, Colbourne JK, Fujita MK, Moreno RG, ten Hallers BF, Haussler D, Heger A, Heiman D, Janes DE, Johnson J, de Jong PJ, Koriabine MY, Lara M, Novick PA, Organ CL, Peach SE: The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011, 477: 587-591. 10.1038/nature10390.
PubMed Central
PubMed
Google Scholar
Kazazian HHJ: Mobile elements: drivers of genome evolution. Science. 2004, 303: 1626-1632. 10.1126/science.1089670.
CAS
PubMed
Google Scholar
Cline M, Smooth M, Cerami E, Kushinski A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD: Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007, 2: 2366-2382. 10.1038/nprot.2007.324.
PubMed Central
CAS
PubMed
Google Scholar
Sharp PA: The centrality of RNA. Cell. 2009, 136: 577-580. 10.1016/j.cell.2009.02.007.
CAS
PubMed
Google Scholar
Licatalosi DD, Darnell RB: RNA processing and its regulation: global insights into biological networks. Nat Rev Genet. 2010, 11: 75-87.
PubMed Central
CAS
PubMed
Google Scholar
Ambros V: The functions of animal microRNAs. Nature. 2004, 431: 350-355. 10.1038/nature02871.
CAS
PubMed
Google Scholar
He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004, 5: 522-531. 10.1038/nrg1379.
CAS
PubMed
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136: 215-233. 10.1016/j.cell.2009.01.002.
PubMed Central
CAS
PubMed
Google Scholar
Höck H, Meister G: The Argonaute protein family. Genome Biol. 2008, 9: 210-10.1186/gb-2008-9-2-210.
PubMed Central
PubMed
Google Scholar
Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ: The deep evolution of metazoan microRNAs. Evol Dev. 2009, 11: 145-150.
Google Scholar
Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acid Res. 2011, 39: D152-D157. 10.1093/nar/gkq1027.
PubMed Central
CAS
PubMed
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol. 2003, 5: R1-10.1186/gb-2003-5-1-r1.
PubMed Central
PubMed
Google Scholar
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol. 2004, 2: e363-10.1371/journal.pbio.0020363.
PubMed Central
PubMed
Google Scholar
Wuchty S, Fontana W, Hofacker IL, Schuster P: Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers. 1999, 49: 145-165. 10.1002/(SICI)1097-0282(199902)49:2<145::AID-BIP4>3.0.CO;2-G.
CAS
PubMed
Google Scholar
Guerra-Assunção JA, Enright AJ: MapMi: automated mapping of microRNA loci. BMC Bioinformatics. 2012, 11: 133-
Google Scholar
Chen K, Rajewsky N: Deep conservation of microRNA-target relationships and 3' UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb Symp Quant Biol. 2006, 71: 149-156. 10.1101/sqb.2006.71.039.
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035.
CAS
PubMed
Google Scholar
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27: 91-105. 10.1016/j.molcel.2007.06.017.
PubMed Central
CAS
PubMed
Google Scholar
Ma JB, Yuan YR, Meister G, Pei Y, Tuschi T, Patel J: Structural basis for 5'-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature. 2005, 434: 666-670. 10.1038/nature03514.
PubMed Central
CAS
PubMed
Google Scholar
Parker JS, Roe SM, Barford D: Structural insight into mRNA recognition from Piwi domain-siRNA guide complex. Nature. 2005, 434: 663-666. 10.1038/nature03462.
PubMed Central
CAS
PubMed
Google Scholar
Bon C, Changeux JP, Jeng TW, Fraenkel-Conrat H: Postsynaptic effects of crotoxin and its isolated subunits. Eur J Biochem. 1979, 99: 471-481. 10.1111/j.1432-1033.1979.tb13278.x.
CAS
PubMed
Google Scholar
Faure G, Copic A, Le Porrier S, Gubensek F, Bon C, Krizaj I: Crotoxin acceptor protein isolated from Torpedo electric organ: binding properties to crotoxin by surface plasmon resonance. Toxicon. 2003, 41: 509-517. 10.1016/S0041-0101(02)00394-X.
CAS
PubMed
Google Scholar
Pereañez JA, Gómez ID, Patiño AC: Relationship between the structure and the enzymatic activity of crotoxin complex and its phospholipase A2 subunit: An in silico approach. J Mol Graph Model. 2012, 35: 36-42.
PubMed
Google Scholar
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature. 2008, 455: 64-71. 10.1038/nature07242.
PubMed Central
CAS
PubMed
Google Scholar
Vidal N, Hedges SB: The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies. 2005, 328: 1000-1008. 10.1016/j.crvi.2005.10.001.
CAS
PubMed
Google Scholar
Paine MJ, Desmond HP, Theakston RDG, Crampton JM: Gene expression in Echis carinatus (carpet viper) venom glands following milking. Toxicon. 1992, 30: 379-386. 10.1016/0041-0101(92)90534-C.
CAS
PubMed
Google Scholar
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M: Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005, 437: 376-380.
PubMed Central
CAS
PubMed
Google Scholar
Schmieder R, Edwards R: Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011, 27: 863-864. 10.1093/bioinformatics/btr026.
PubMed Central
CAS
PubMed
Google Scholar
Smit AFA, Hubley R, Green P: RepeatMasker Open-3.0. http://repeatmasker.org,
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
CAS
PubMed
Google Scholar
Papadopoulos JS, Agarwala R: COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics. 2007, 23: 1073-1079. 10.1093/bioinformatics/btm076.
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5: 621-628. 10.1038/nmeth.1226.
CAS
PubMed
Google Scholar
Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A: Differential expression in RNA-seq: a matter of depth. Genome Res. 2011, 21: 2213-2223. 10.1101/gr.124321.111.
PubMed Central
CAS
PubMed
Google Scholar
Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006, 22: 1658-1659. 10.1093/bioinformatics/btl158.
CAS
PubMed
Google Scholar
Niu BF, Fu LM, Sun SL, Li WZ: Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics. 2010, 11: 187-10.1186/1471-2105-11-187.
PubMed Central
PubMed
Google Scholar
Stefani G, Slack FJ: A ‘pivotal’ new rule for microRNA-mRNA interactions. Nature Struct & Mol Biol. 2012, 19: 265-266. 10.1038/nsmb.2256.
CAS
Google Scholar
Chi SW, Hannon GJ, Darnell RB: An alternative mode of microRNA target recognition. Nature Struct & Mol Biol. 2012, 19: 321-328. 10.1038/nsmb.2230.
CAS
Google Scholar
Seelbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 2008, 455: 58-63. 10.1038/nature07228.
Google Scholar