Kim VN, Nam JW: Genomics of microRNA. Trends Genet. 2006, 22 (3): 165-173.
CAS
PubMed
Google Scholar
Olena AF, Patton JG: Genomic organization of microRNAs. J Cell Physiol. 2010, 222 (3): 540-545.
PubMed Central
CAS
PubMed
Google Scholar
Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006, 20 (5): 515-524.
CAS
PubMed
Google Scholar
Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science (New York, NY. 2007, 318 (5858): 1931-1934.
CAS
Google Scholar
Callis TE, Deng Z, Chen JF, Wang DZ: Muscling through the microRNA world. Experimental biology and medicine (Maywood, NJ. 2008, 233 (2): 131-138.
CAS
Google Scholar
McCarthy JJ: MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta. 2008, 1779 (11): 682-691.
PubMed Central
CAS
PubMed
Google Scholar
Zhao Y, Samal E, Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005, 436 (7048): 214-220.
CAS
PubMed
Google Scholar
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006, 38 (2): 228-233.
PubMed Central
CAS
PubMed
Google Scholar
Townley-Tilson WH, Callis TE, Wang D: MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol. 2009, 42 (8): 1252-1255.
PubMed Central
PubMed
Google Scholar
Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF: Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA. 2006, 103 (23): 8721-8726.
PubMed Central
CAS
PubMed
Google Scholar
Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, Wang J, Sun Y, Zhang P, Fan M: Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008, 36 (8): 2690-2699.
PubMed Central
CAS
PubMed
Google Scholar
Wong CF, Tellam RL: MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem. 2008, 283 (15): 9836-9843.
CAS
PubMed
Google Scholar
Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, Buckingham M: Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA. 2009, 106 (32): 13383-13387.
PubMed Central
CAS
PubMed
Google Scholar
Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, Cheng A, Hall BM, Qualman SJ, Chandler DS: NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008, 14 (5): 369-381.
CAS
PubMed
Google Scholar
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V: Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004, 5 (3): R13-
PubMed Central
PubMed
Google Scholar
Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A: The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 2006, 8 (3): 278-284.
CAS
PubMed
Google Scholar
van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Olson EN: A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009, 17 (5): 662-673.
PubMed Central
CAS
PubMed
Google Scholar
Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V: Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell. 2009, 36 (1): 61-74.
PubMed Central
CAS
PubMed
Google Scholar
Sarkar S, Dey BK, Dutta A: MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell. 2010, 21 (13): 2138-2149.
PubMed Central
CAS
PubMed
Google Scholar
Dey BK, Gagan J, Dutta A: miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol. 2011, 31 (1): 203-214.
PubMed Central
CAS
PubMed
Google Scholar
Chen Y, Gelfond J, McManus LM, Shireman PK: Temporal MicroRNA Expression during in vitro Myogenic Progenitor Cell Proliferation and Differentiation: Regulation of Proliferation by miR-682. Physiol Genomics. 2011, 43: 621-630.
PubMed Central
CAS
PubMed
Google Scholar
Ge Y, Sun Y, Chen J: IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol. 2011, 192 (1): 69-81.
PubMed Central
CAS
PubMed
Google Scholar
le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafre SA: Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 2007, 26 (15): 3699-3708.
PubMed Central
CAS
PubMed
Google Scholar
Ge Y, Chen J: MicroRNAs in skeletal myogenesis. Cell cycle (Georgetown, Tex. 2011, 10 (3): 441-448.
CAS
Google Scholar
Guller I, Russell AP: MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. J Physiol. 2010, 588 (Pt 21): 4075-4087.
PubMed Central
CAS
PubMed
Google Scholar
Ciarapica R, Russo G, Verginelli F, Raimondi L, Donfrancesco A, Rota R, Giordano A: Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell cycle (Georgetown, Tex. 2009, 8 (1): 172-175.
CAS
Google Scholar
Granjon A, Gustin MP, Rieusset J, Lefai E, Meugnier E, Guller I, Cerutti C, Paultre C, Disse E, Rabasa-Lhoret R: The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes. 2009, 58 (11): 2555-2564.
PubMed Central
CAS
PubMed
Google Scholar
Sun Y, Ge Y, Drnevich J, Zhao Y, Band M, Chen J: Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol. 2010, 189 (7): 1157-1169.
PubMed Central
CAS
PubMed
Google Scholar
Cardinali B, Castellani L, Fasanaro P, Basso A, Alema S, Martelli F, Falcone G: Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One. 2009, 4 (10): e7607-
PubMed Central
PubMed
Google Scholar
Koutsoulidou A, Mastroyiannopoulos NP, Furling D, Uney JB, Phylactou LA: Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev Biol. 2011, 11: 34-
PubMed Central
CAS
PubMed
Google Scholar
Zhou B, Liu HL, Shi FX, Wang JY: MicroRNA expression profiles of porcine skeletal muscle. Anim Genet. 2010, 41 (5): 499-508.
CAS
PubMed
Google Scholar
Yan X, Ding L, Li Y, Zhang X, Liang Y, Sun X, Teng CB: Identification and profiling of microRNAs from skeletal muscle of the common carp. PLoS One. 2012, 7 (1): e30925-
PubMed Central
CAS
PubMed
Google Scholar
Marzi MJ, Puggioni EM, Dall’Olio V, Bucci G, Bernard L, Bianchi F, Crescenzi M, Di Fiore PP, Nicassio F: Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation. J Cell Biol. 2012, 199 (1): 77-95.
PubMed Central
CAS
PubMed
Google Scholar
Seok HY, Tatsuguchi M, Callis TE, He A, Pu WT, Wang DZ: miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation. J Biol Chem. 2011, 286 (41): 35339-35346.
PubMed Central
CAS
PubMed
Google Scholar
Barro M, Carnac G, Flavier S, Mercier J, Vassetzky Y, Laoudj-Chenivesse D: Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects. J Cell Mol Med. 2010, 14 (1–2): 275-289.
PubMed Central
CAS
PubMed
Google Scholar
Sterrenburg E, Turk R, Hoen PA T, Van Deutekom JC, Boer JM, Van Ommen GJ, Den Dunnen JT: Large-scale gene expression analysis of human skeletal myoblast differentiation. Neuromuscul Disord. 2004, 14 (8–9): 507-518.
PubMed
Google Scholar
da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4 (1): 44-57.
PubMed
Google Scholar
da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37 (1): 1-13.
PubMed
Google Scholar
Ritchie W, Flamant S, Rasko JE: Predicting microRNA targets and functions: traps for the unwary. Nat Methods. 2009, 6 (6): 397-398.
CAS
PubMed
Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126 (6): 1203-1217.
CAS
PubMed
Google Scholar
Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG: Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics. 2009, 25 (23): 3049-3055.
CAS
PubMed
Google Scholar
Huang JC, Babak T, Corson TW, Chua G, Khan S, Gallie BL, Hughes TR, Blencowe BJ, Frey BJ, Morris QD: Using expression profiling data to identify human microRNA targets. Nat Methods. 2007, 4 (12): 1045-1049.
CAS
PubMed
Google Scholar
Huang Y, Zou Q, Song H, Song F, Wang L, Zhang G, Shen X: A study of miRNAs targets prediction and experimental validation. Protein Cell. 2010, 1 (11): 979-986.
CAS
PubMed
Google Scholar
Wang YP, Li KB: Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics. 2009, 10: 218-
PubMed Central
PubMed
Google Scholar
Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ: Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One. 2010, 5 (2): e8898-
PubMed Central
PubMed
Google Scholar
Sayed D, Abdellatif M: MicroRNAs in development and disease. Physiol Rev. 2011, 91 (3): 827-887.
CAS
PubMed
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136 (2): 215-233.
PubMed Central
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120 (1): 15-20.
CAS
PubMed
Google Scholar
Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 2010, 190 (5): 867-879.
PubMed Central
CAS
PubMed
Google Scholar
Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A: Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 2006, 174 (5): 677-687.
PubMed Central
CAS
PubMed
Google Scholar
Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008, 283 (2): 1026-1033.
CAS
PubMed
Google Scholar
Yao Q, Xu H, Zhang QQ, Zhou H, Qu LH: MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun. 2009, 388 (3): 539-542.
CAS
PubMed
Google Scholar
Kim YJ, Hwang SJ, Bae YC, Jung JS: MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem cells (Dayton, Ohio). 2009, 27 (12): 3093-3102.
CAS
Google Scholar
Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res. 2009, 82 (1): 21-29.
PubMed Central
CAS
PubMed
Google Scholar
Talotta F, Cimmino A, Matarazzo MR, Casalino L, De Vita G, D’Esposito M, Di Lauro R, Verde P: An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene. 2009, 28 (1): 73-84.
CAS
PubMed
Google Scholar
Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, van Rooij E, Olson EN: Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell. 2010, 18 (3): 282-293.
PubMed Central
CAS
PubMed
Google Scholar
Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010, 39 (4): 493-506.
PubMed Central
CAS
PubMed
Google Scholar
Srivastava N, Manvati S, Srivastava A, Pal R, Kalaiarasan P, Chattopadhyay S, Gochhait S, Dua R, Bamezai RN: miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention. Breast Cancer Res. 2011, 13 (2): R39-
PubMed Central
PubMed
Google Scholar
Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O’Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O: miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell. 2009, 35 (5): 610-625.
PubMed Central
CAS
PubMed
Google Scholar
To KH, Pajovic S, Gallie BL, Theriault BL: Regulation of p14ARF expression by miR-24: a potential mechanism compromising the p53 response during retinoblastoma development. BMC Cancer. 2012, 12: 69-
PubMed Central
CAS
PubMed
Google Scholar
Dogar AM, Towbin H, Hall J: Suppression of latent transforming growth factor (TGF)-beta1 restores growth inhibitory TGF-beta signaling through microRNAs. J Biol Chem. 2011, 286 (18): 16447-16458.
PubMed Central
CAS
PubMed
Google Scholar
Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, Nir T, Lennox KA, Behlke MA, Dor Y: miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011, 30 (5): 835-845.
PubMed Central
CAS
PubMed
Google Scholar
Singh R, Saini N: Downregulation of BCL2 by miRNAs augments drug induced apoptosis: Combined computational and experimental approach. J Cell Sci. 2012
Google Scholar
Singh R, Saini N: Downregulation of BCL2 by miRNAs augments drug induced apoptosis: Combined computational and experimental approach. J Cell Sci. 2012, 125 (6): 1568-1578.
CAS
PubMed
Google Scholar
Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR, Zeng C, Zhuang SM: MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 2011, 40 (10): 4615-4625.
PubMed Central
PubMed
Google Scholar
Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T: The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009, 23 (11): 1327-1337.
PubMed Central
CAS
PubMed
Google Scholar
Chinchilla A, Lozano E, Daimi H, Esteban FJ, Crist C, Aranega AE, Franco D: MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc Res. 2011, 89 (1): 98-108.
CAS
PubMed
Google Scholar
Nishi H, Ono K, Horie T, Nagao K, Kinoshita M, Kuwabara Y, Watanabe S, Takaya T, Tamaki Y, Takanabe-Mori R: MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes. Mol Cell Biol. 2011, 31 (4): 744-755.
PubMed Central
CAS
PubMed
Google Scholar
Lee JJ, Drakaki A, Iliopoulos D, Struhl K: MiR-27b targets PPARgamma to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells. Oncogene. 2011, 31 (33): 3818-3825.
PubMed Central
PubMed
Google Scholar
Guttilla IK, White BA: Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009, 284 (35): 23204-23216.
PubMed Central
CAS
PubMed
Google Scholar
Yu F, Deng H, Yao H, Liu Q, Su F, Song E: Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010, 29 (29): 4194-4204.
CAS
PubMed
Google Scholar
Joglekar MV, Patil D, Joglekar VM, Rao GV, Reddy DN, Mitnala S, Shouche Y, Hardikar AA: The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets. 2009, 1 (2): 137-147.
PubMed
Google Scholar
Braun J, Hoang-Vu C, Dralle H, Huttelmaier S: Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene. 2010, 29 (29): 4237-4244.
CAS
PubMed
Google Scholar
Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, Van Der Made I, Herias V, Van Leeuwen RE, Schellings MW, Barenbrug P: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009, 104 (2): 170-178. 176p following 178
CAS
PubMed
Google Scholar
Wu F, Zhu S, Ding Y, Beck WT, Mo YY: MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res. 2009, 15 (5): 1550-1557.
PubMed Central
CAS
PubMed
Google Scholar
Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R, Dani C, Barbry P: Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 2011, 12 (7): R64-
PubMed Central
CAS
PubMed
Google Scholar
Zhang J, Zhang H, Liu J, Tu X, Zang Y, Zhu J, Chen J, Dong L, Zhang J: miR-30 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun. 2012, 417 (3): 1100-1105.
CAS
PubMed
Google Scholar
Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B: MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. Journal of molecular medicine (Berlin, Germany). 2009, 87 (1): 43-51.
CAS
Google Scholar
Donzelli S, Fontemaggi G, Fazi F, Di Agostino S, Padula F, Biagioni F, Muti P, Strano S, Blandino G: MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ. 2011, 19 (6): 1038-1048.
PubMed Central
PubMed
Google Scholar
Adlakha YK, Saini N: MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells. Cell Mol Life Sci. 2011, 68 (8): 1415-1428.
CAS
PubMed
Google Scholar
Guidi M, Muinos-Gimeno M, Kagerbauer B, Marti E, Estivill X, Espinosa-Parrilla Y: Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol Biol. 2010, 11: 95-
PubMed Central
CAS
PubMed
Google Scholar
Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS: A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA. 2008, 105 (37): 13906-13911.
PubMed Central
CAS
PubMed
Google Scholar
Yoshino H, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Nishiyama K, Nohata N, Seki N, Nakagawa M: The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer. 2011, 104 (5): 808-818.
PubMed Central
CAS
PubMed
Google Scholar
Kawakami K, Enokida H, Chiyomaru T, Tatarano S, Yoshino H, Kagara I, Gotanda T, Tachiwada T, Nishiyama K, Nohata N: The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur J Cancer. 2011, 48 (6): 827-836.
Google Scholar
Chiyomaru T, Enokida H, Tatarano S, Kawahara K, Uchida Y, Nishiyama K, Fujimura L, Kikkawa N, Seki N, Nakagawa M: miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer. 2010, 102 (5): 883-891.
PubMed Central
CAS
PubMed
Google Scholar
Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Uchida Y, Kawahara K, Nishiyama K, Seki N, Nakagawa M: Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer. Urol Oncol. 2010, 30 (4): 434-443.
PubMed
Google Scholar
Rao PK, Missiaglia E, Shields L, Hyde G, Yuan B, Shepherd CJ, Shipley J, Lodish HF: Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells. FASEB J. 2010, 24 (9): 3427-3437.
PubMed Central
CAS
PubMed
Google Scholar
Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, Nishiyama K, Seki N, Nakagawa M: MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urol Oncol. 2011, 31 (1): 115-123.
PubMed
Google Scholar
Boutz PL, Chawla G, Stoilov P, Black DL: MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 2007, 21 (1): 71-84.
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ, Stein GS: A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA. 2011, 108 (24): 9863-9868.
PubMed Central
CAS
PubMed
Google Scholar
Huang J, Zhao L, Xing L, Chen D: MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem cells (Dayton, Ohio). 2010, 28 (2): 357-364.
Google Scholar
Chung TK, Lau TS, Cheung TH, Yim SF, Lo KW, Siu NS, Chan LK, Yu MY, Kwong J, Doran G: Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer. 2012
Google Scholar
Lam EK, Wang X, Shin VY, Zhang S, Morrison H, Sun J, Ng EK, Yu J, Jin H: A microRNA contribution to aberrant Ras activation in gastric cancer. American journal of translational research. 2011, 3 (2): 209-218.
PubMed Central
CAS
PubMed
Google Scholar
Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, Zhao J, Majerciak V, Gaur AB, Chen S: MicroRNA-204/211 alters epithelial physiology. FASEB J. 2010, 24 (5): 1552-1571.
PubMed Central
CAS
PubMed
Google Scholar
Li G, Luna C, Qiu J, Epstein DL, Gonzalez P: Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2011, 52 (6): 2999-3007.
PubMed Central
CAS
PubMed
Google Scholar
Courboulin A, Paulin R, Giguere NJ, Saksouk N, Perreault T, Meloche J, Paquet ER, Biardel S, Provencher S, Cote J: Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 2011, 208 (3): 535-548.
PubMed Central
CAS
PubMed
Google Scholar
Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, Shapiro C, Jacob ST, Majumder S: Anti-microRNA-222 (anti-miR-222) and -181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem. 2011, 286 (49): 42292-42302.
PubMed Central
CAS
PubMed
Google Scholar
Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP: MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 2010, 9: 229-
PubMed Central
PubMed
Google Scholar
Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G: MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006, 108 (9): 3068-3071.
CAS
PubMed
Google Scholar
Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, Burow ME, Ivan M, Croce CM, Nephew KP: MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011, 30 (9): 1082-1097.
PubMed Central
CAS
PubMed
Google Scholar
Quintavalle C, Garofalo M, Zanca C, Romano G, Iaboni M, Del Basso De Caro M, Martinez-Montero JC, Incoronato M, Nuovo G, Croce CM: miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene. 2012, 31 (7): 858-868.
PubMed Central
CAS
PubMed
Google Scholar
Polesskaya A, Cuvellier S, Naguibneva I, Duquet A, Moss EG, Harel-Bellan A: Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 2007, 21 (9): 1125-1138.
PubMed Central
CAS
PubMed
Google Scholar
Tomczak KK, Marinescu VD, Ramoni MF, Sanoudou D, Montanaro F, Han M, Kunkel LM, Kohane IS, Beggs AH: Expression profiling and identification of novel genes involved in myogenic differentiation. FASEB J. 2004, 18 (2): 403-405.
CAS
PubMed
Google Scholar
Shen X, Collier JM, Hlaing M, Zhang L, Delshad EH, Bristow J, Bernstein HS: Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn. 2003, 226 (1): 128-138.
CAS
PubMed
Google Scholar
Delgado I, Huang X, Jones S, Zhang L, Hatcher R, Gao B, Zhang P: Dynamic gene expression during the onset of myoblast differentiation in vitro. Genomics. 2003, 82 (2): 109-121.
CAS
PubMed
Google Scholar
Kuninger D, Kuzmickas R, Peng B, Pintar JE, Rotwein P: Gene discovery by microarray: identification of novel genes induced during growth factor-mediated muscle cell survival and differentiation. Genomics. 2004, 84 (5): 876-889.
CAS
PubMed
Google Scholar
Moran JL, Li Y, Hill AA, Mounts WM, Miller CP: Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genomics. 2002, 10 (2): 103-111.
CAS
PubMed
Google Scholar
Porter JD, Israel S, Gong B, Merriam AP, Feuerman J, Khanna S, Kaminski HJ: Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiol Genomics. 2006, 24 (3): 264-275.
CAS
PubMed
Google Scholar
Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ: Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics. 2003, 14 (3): 261-271.
CAS
PubMed
Google Scholar
Ruike Y, Ichimura A, Tsuchiya S, Shimizu K, Kunimoto R, Okuno Y, Tsujimoto G: Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J Hum Genet. 2008, 53 (6): 515-523.
CAS
PubMed
Google Scholar
Thomson DW, Bracken CP, Goodall GJ: Experimental strategies for microRNA target identification. Nucleic Acids Res. 2011, 39 (16): 6845-6853.
PubMed Central
CAS
PubMed
Google Scholar
Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS: Experimental validation of miRNA targets. Methods (San Diego, Calif. 2008, 44 (1): 47-54.
CAS
Google Scholar
Zhu CH, Mouly V, Cooper RN, Mamchaoui K, Bigot A, Shay JW, Di Santo JP, Butler-Browne GS, Wright WE: Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell. 2007, 6 (4): 515-523.
CAS
PubMed
Google Scholar
Petrov AV, Allinne J, Pirozhkova IV, Laoudj D, Lipinski M, Vassetzky YS: A nuclear matrix attachment site in the 4q35 locus has an enhancer-blocking activity in vivo: implications for the facio-scapulo-humeral dystrophy. Genome Res. 2008, 18 (1): 39-45.
PubMed Central
CAS
PubMed
Google Scholar
Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE: Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 2010, 24 (10): 992-1009.
PubMed Central
CAS
PubMed
Google Scholar
Zeng Y, Cullen BR: Sequence requirements for micro RNA processing and function in human cells. RNA (New York, NY. 2003, 9 (1): 112-123.
CAS
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408.
CAS
PubMed
Google Scholar
Muller PY, Janovjak H, Miserez AR, Dobbie Z: Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques. 2002, 32 (6): 1372-1374. 1376, 1378–1379
CAS
PubMed
Google Scholar
Chomczynski P, Sacchi N: The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006, 1 (2): 581-585.
CAS
PubMed
Google Scholar
Smyth GK: Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions unsing R and Bioconductor. Edited by: Gentleman R, Carey V, Dudoit S, Huber W. 2005, New York: Springer, 397-420.
Google Scholar
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115 (7): 787-798.
CAS
PubMed
Google Scholar