Axtell MJ, Snyder JA, Bartel DP: Common functions for diverse small RNAs of land plants. Plant Cell. 2007, 19 (6): 1750-1769. 10.1105/tpc.107.051706.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brodersen P, Voinnet O: The diversity of RNA silencing pathways in plants. Trends Genet. 2006, 22 (5): 268-280. 10.1016/j.tig.2006.03.003.
Article
CAS
PubMed
Google Scholar
Chapman EJ, Carrington JC: Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet. 2007, 8 (11): 884-896. 10.1038/nrg2179.
Article
CAS
PubMed
Google Scholar
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC: Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004, 2 (5): E104-10.1371/journal.pbio.0020104.
Article
PubMed Central
PubMed
Google Scholar
Vaucheret H: Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006, 20 (7): 759-771. 10.1101/gad.1410506.
Article
CAS
PubMed
Google Scholar
Ruiz-Ferrer V, Voinnet O: Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol. 2009, 60: 485-510. 10.1146/annurev.arplant.043008.092111.
Article
CAS
PubMed
Google Scholar
Allen E, Xie Z, Gustafson AM, Carrington JC: MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005, 121 (2): 207-221. 10.1016/j.cell.2005.04.004.
Article
CAS
PubMed
Google Scholar
Lippman Z, Martienssen R: The role of RNA interference in heterochromatic silencing. Nature. 2004, 431 (7006): 364-370. 10.1038/nature02875.
Article
CAS
PubMed
Google Scholar
Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK: Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005, 123 (7): 1279-1291. 10.1016/j.cell.2005.11.035.
Article
PubMed Central
CAS
PubMed
Google Scholar
Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H: A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 2007, 21 (23): 3123-3134. 10.1101/gad.1595107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang XJ, Gaasterland T, Chua NH: Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol. 2005, 6 (4): R30-10.1186/gb-2005-6-4-r30.
Article
PubMed Central
PubMed
Google Scholar
Lapidot M, Pilpel Y: Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep. 2006, 7 (12): 1216-1222. 10.1038/sj.embor.7400857.
Article
PubMed Central
CAS
PubMed
Google Scholar
Henz SR, Cumbie JS, Kasschau KD, Lohmann JU, Carrington JC, Weigel D, Schmid M: Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol. 2007, 144 (3): 1247-1255. 10.1104/pp.107.100396.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jin H, Vacic V, Girke T, Lonardi S, Zhu JK: Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol. 2008, 9: 6-10.1186/1471-2199-9-6.
Article
PubMed Central
PubMed
Google Scholar
Zhou X, Sunkar R, Jin H, Zhu JK, Zhang W: Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res. 2009, 19 (1): 70-78.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gan Q, Li D, Liu G, Zhu L: Identification of potential antisense transcripts in rice using conventional microarray. Mol Biotechnol. 2011, 51 (1): 37-43.
Article
Google Scholar
Ron M, Alandete Saez M, Eshed Williams L, Fletcher JC, McCormick S: Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev. 2010, 24 (10): 1010-1021. 10.1101/gad.1882810.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith CA, Robertson D, Yates B, Nielsen DM, Brown D, Dean RA, Payne GA: The effect of temperature on natural antisense transcript (NAT) expression in aspergillus flavus. Curr Genet. 2008, 54 (5): 241-269. 10.1007/s00294-008-0215-9.
Article
CAS
PubMed
Google Scholar
Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Zhu JK, Staskawicz BJ, Jin H: A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A. 2006, 103 (47): 18002-18007. 10.1073/pnas.0608258103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Held MA, Penning B, Brandt AS, Kessans SA, Yong W, Scofield SR, Carpita NC: Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci U S A. 2008, 105 (51): 20534-20539. 10.1073/pnas.0809408105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J: Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet. 2006, 38 (1): 124-129. 10.1038/ng1704.
Article
CAS
PubMed
Google Scholar
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003, 302 (5646): 842-846. 10.1126/science.1088305.
Article
CAS
PubMed
Google Scholar
Poole RL, Barker GL, Werner K, Biggi GF, Coghill J, Gibbings JG, Berry S, Dunwell JM, Edwards KJ: Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription. BMC Genomics. 2008, 9: 475-10.1186/1471-2164-9-475.
Article
PubMed Central
PubMed
Google Scholar
Wang H, Chua NH, Wang XJ: Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol. 2006, 7 (10): R92-10.1186/gb-2006-7-10-r92.
Article
PubMed Central
PubMed
Google Scholar
Chen D, Yuan C, Zhang J, Zhang Z, Bai L, Meng Y, Chen LL, Chen M: PlantNATsDB: a comprehensive database of plant natural antisense transcripts. Nucleic Acids Res. 2012, 40: D1181-D1193.
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N: Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40 (D1): D1178-D1186. 10.1093/nar/gkr944.
Article
PubMed Central
CAS
PubMed
Google Scholar
Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ: Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol. 2008, 18 (10): 758-762. 10.1016/j.cub.2008.04.042.
Article
PubMed Central
CAS
PubMed
Google Scholar
Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, Axtell MJ: Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA. 2009, 15 (12): 2112-2121. 10.1261/rna.1774909.
Article
PubMed Central
CAS
PubMed
Google Scholar
German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ: Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol. 2008, 26 (8): 941-946. 10.1038/nbt1417.
Article
CAS
PubMed
Google Scholar
Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y: Rice MicroRNA effector complexes and targets. Plant Cell. 2009, 21 (11): 3421-3435. 10.1105/tpc.109.070938.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS: Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol. 2011, 11: 5-10.1186/1471-2229-11-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu Z, Jiang Q, Ni Z, Chen R, Xu S, Zhang H: Analyses of a Glycine max degradome library identify microRNA targets and microRNA that trigger secondary siRNA biogenesis. J Integr Plant Biol. in press. Published abstract
Shoemaker RCP K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR: Genome duplication in soybean (Glycine subgenus soja). Genetics. 1996, 144: 329-338.
Google Scholar
Pagel J, Walling JG, Young ND, Shoemaker RC, Jackson SA: Segmental duplications within the Glycine max genome revealed by fluorescence in situ hybridization of bacterial artificial chromosomes. Genome. 2004, 47 (4): 764-768. 10.1139/g04-025.
Article
CAS
PubMed
Google Scholar
Walling JG, Shoemaker R, Young N, Mudge J, Jackson S: Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics. 2006, 172 (3): 1893-1900.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van K, Kim DH, Cai CM, Kim MY, Shin JH, Graham MA, Shoemaker RC, Choi BS, Yang TJ, Lee SH: Sequence level analysis of recently duplicated regions in soybean [Glycine max (L.) Merr.] genome. DNA Res. 2008, 15 (2): 93-102. 10.1093/dnares/dsn001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J: Genome sequence of the palaeopolyploid soybean. Nature. 2010, 463 (7278): 178-183. 10.1038/nature08670.
Article
CAS
PubMed
Google Scholar
Chen D, Meng Y, Ma X, Mao C, Bai Y, Cao J, Gu H, Wu P, Chen M: Small RNAs in angiosperms: sequence characteristics, distribution and generation. Bioinformatics. 2010, 26 (11): 1391-1394. 10.1093/bioinformatics/btq150.
Article
CAS
PubMed
Google Scholar
Lu C, Jeong DH, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher SR, Maher C, Zhang L, Ware D: Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A. 2008, 105 (12): 4951-4956. 10.1073/pnas.0708743105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Markham NR, Zuker M: UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol. 2008, 453: 3-31. 10.1007/978-1-60327-429-6_1.
Article
CAS
PubMed
Google Scholar
Kozomara A, Griffiths-Jones S: MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39 (suppl 1): D152-D157.
Article
PubMed Central
CAS
PubMed
Google Scholar
Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2005, 33 (suppl 1): D121-D124.
PubMed Central
CAS
PubMed
Google Scholar
Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment program. Bioinformatics. 2008, 24 (5): 713-714. 10.1093/bioinformatics/btn025.
Article
CAS
PubMed
Google Scholar
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D: Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005, 8 (4): 517-527. 10.1016/j.devcel.2005.01.018.
Article
CAS
PubMed
Google Scholar
Dsouza M, Larsen N, Overbeek R: Searching for patterns in genomic data. Trends Genet. 2007, 13: 497-498.
Article
Google Scholar
Sunkar R, Zhu JK: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004, 16 (8): 2001-2019. 10.1105/tpc.104.022830.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP: Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004, 14 (6): 787-799. 10.1016/j.molcel.2004.05.027.
Article
CAS
PubMed
Google Scholar
Dai X, Zhao PX: psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 2011, 39: W155-W159. 10.1093/nar/gkr319.
Article
PubMed Central
CAS
PubMed
Google Scholar