Cloutier R, Ahlberg PE: Morphology, characters, and the interrelationships of basal sarcopterygians. Interrelationship of fishes. Edited by: Stiassny LJ, Parenti LR, Johson G. 1996, San Diego, CA: Academic, 445-479.
Chapter
Google Scholar
Maisey JG: Discovering fossil fishes. 1996, New York: Holt
Google Scholar
Smith JLB: A surviving fish of the order Actinistia. T Roy Soc S Afr. 1989, 47: 9-12. 10.1080/00359198909520146.
Article
Google Scholar
Smith JLB: A living fish of Mesozoic type. Nature. 1939, 143: 455-456. 10.1038/143455a0.
Article
Google Scholar
Erdmann MV, Caldwell RL, Jewett SL, Tjakrawidjaja A: The second recorded living coelacanth from north Sulawesi. Environ Biol Fish. 1999, 54: 445-451. 10.1023/A:1007533629132.
Article
Google Scholar
Pouyaud L, Wirjoatmodjo S, Rachmatika I, Tjakrawidjaja A, Hadiaty R, Hadie W: Une nouvelle espèce de coelacanthe. Preuves gènètiques et morphologiques. Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie. 1999, 322: 261-267. 10.1016/S0764-4469(99)80061-4.
Article
CAS
Google Scholar
Holder MT, Erdmann MV, Wilcox TP, Caldwell RL, Hillis DM: Two living species of coelacanths?. P Natl Acad Sci USA. 1999, 96: 12616-12620. 10.1073/pnas.96.22.12616.
Article
CAS
Google Scholar
Shan Y, Gras R: 43 genes support the lungfish-coelacanth grouping related to the closest living relative of tetrapods with the Bayesian method under the coalescence model. BMC Research Notes. 2011, 4: 49-10.1186/1756-0500-4-49.
Article
PubMed Central
PubMed
Google Scholar
Takezaki N, Figueroa F, Zaleska-Rutczynska Z, Takahata N, Klein J: The phylogenetic relationship of tetrapod, coelacanth, and lungfish revealed by the sequences of forty-four nuclear genes. Mol Biol Evol. 2004, 21: 1512-1524. 10.1093/molbev/msh150.
Article
CAS
PubMed
Google Scholar
Inoue JG, Miya M, Venkatesh B, Nishida M: The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene. 2005, 349: 227-235.
Article
CAS
PubMed
Google Scholar
Brinkmann H, Venkatesh B, Brenner S, Meyer A: Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. P Natl Acad Sci USA. 2004, 101: 4900-4905. 10.1073/pnas.0400609101.
Article
CAS
Google Scholar
Tohyama Y, Ichimiya T, Kasama-Yoshida H, Cao Y, Hasegawa M, Kojima H, Tamai Y, Kurihara T: Phylogenetic relation of lungfish indicated by the amino acid sequence of myelin DM20. Mol Brain Res. 2000, 80: 256-259. 10.1016/S0169-328X(00)00143-1.
Article
CAS
PubMed
Google Scholar
Zardoya R, Cao Y, Hasegawa M, Meyer A: Searching for the closest living relative(s) of tetrapods through evolutionary analyses of mitochondrial and nuclear data. Mol Biol Evol. 1998, 15: 506-517. 10.1093/oxfordjournals.molbev.a025950.
Article
CAS
PubMed
Google Scholar
Zardoya R, Meyer A: Evolutionary relationships of the coelacanth, lungfishes, and tetrapods based on the 28S ribosomal RNA gene. P Natl Acad Sci USA. 1996, 93: 5449-5454. 10.1073/pnas.93.11.5449.
Article
CAS
Google Scholar
Yokobori SI, Hasegawa M, Ueda T, Okada N, Nishikawa K, Watanabe K: Relationship among coelacanths, lungfishes, and tetrapods: a phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences. J Mol Evol. 1994, 38: 602-609.
Article
CAS
PubMed
Google Scholar
Meyer A, Dolven SI: Molecules, fossils, and the origin of tetrapods. J Mol Evol. 1992, 35: 102-113.
Article
CAS
PubMed
Google Scholar
Gorr T, Kleinschmidt T, Sgouros JG, Kasang L: A “living fossil” sequence: primary structure of the coelacanth (Latimeria chalumnae) hemoglobin - evolutionary and functional aspects. Biol Chem H-S. 1991, 372: 599-612.
CAS
Google Scholar
Gorr T, Kleinschmidt T, Fricke H: Close tetrapod relationships of the coelacanth Latimeria indicated by haemoglobin sequences. Nature. 1991, 351: 394-397. 10.1038/351394a0.
Article
CAS
PubMed
Google Scholar
Venkatesh B, Erdmann MV, Brenner S: Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. P Natl Acad Sci USA. 2001, 98: 11382-11387. 10.1073/pnas.201415598.
Article
CAS
Google Scholar
Meyer A: Molecular evidence on the origin of tetrapods and the relationships of the coelacanth. Trends Ecol Evol. 1995, 10: 111-116. 10.1016/S0169-5347(00)89004-7.
Article
CAS
PubMed
Google Scholar
Amemiya CT, Powers TP, Prohaska SJ, Grimwood J, Schmutz J, Dickson M, Miyake T, Schoenborn MA, Myers RM, Ruddle FH, Stadler PF: Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome. P Natl Acad Sci USA. 2010, 107: 3622-3627. 10.1073/pnas.0914312107.
Article
CAS
Google Scholar
Shashikant C, Bolanowski SA, Danke J, Amemiya CT: Hoxc8 early enhancer of the Indonesian coelacanth, Latimeria menadoensis. J Exp Zool Part B. 2004, 302: 557-563.
Article
Google Scholar
Koh EGL, Lam K, Christoffels A, Erdmann MV, Brenner S, Venkatesh B: Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis. P Natl Acad Sci USA. 2003, 100: 1084-1088. 10.1073/pnas.0237317100.
Article
CAS
Google Scholar
Mulley JF, Holland PWH: Parallel retention of Pdx2 genes in cartilaginous fish and coelacanths. Mol Biol Evo. 2010, 27: 2386-2391. 10.1093/molbev/msq121.
Article
CAS
Google Scholar
Noonan JP, Grimwood J, Danke J, Schmutz J, Dickson M, Amemiya CT, Myers RM: Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. Genome Res. 2004, 14: 2397-2405. 10.1101/gr.2972804.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hadzhiev Y, Lang M, Ertzer R, Meyer A, Strähle U, Müller F: Functional diversification of sonic hedgehog paralog enhancers identified by phylogenomic reconstruction. Genome Biol. 2007, 8: R106-10.1186/gb-2007-8-6-r106.
Article
PubMed Central
PubMed
Google Scholar
Yokoyama S, Tada T: Adaptive evolution of the African and Indonesian coelacanths to deep-sea environments. Gene. 2000, 261: 35-42. 10.1016/S0378-1119(00)00474-1.
Article
CAS
PubMed
Google Scholar
Modisakeng K, Jiwaji M, Pesce E-R, Robert J, Amemiya C, Dorrington R, Blatch G: Isolation of a Latimeria menadoensis heat shock protein 70 that has all the features of an inducible gene and encodes a functional molecular chaperone. Mol Genet Genomics. 2009, 282: 185-196. 10.1007/s00438-009-0456-4.
Article
CAS
PubMed
Google Scholar
Gwee PC, Amemiya CT, Brenner S, Venkatesh B: Sequence and organization of coelacanth neurohypophysial hormone genes: evolutionary history of the vertebrate neurohypophysial hormone gene locus. BMC Evol Biol. 2008, 8: 93-10.1186/1471-2148-8-93.
Article
PubMed Central
PubMed
Google Scholar
Canapa A, Olmo E, Forconi M, Pallavicini A, Makapedua MD, Biscotti MA, Barucca M: Composition and Phylogenetic Analysis of Vitellogenin Coding Sequences in the Indonesian Coelacanth Latimeria menadoensis. J Exp Zool Part B. 2012, 318: 404-416. 10.1002/jez.b.22455.
Article
CAS
Google Scholar
Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D: A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature. 2006, 441: 87-90. 10.1038/nature04696.
Article
CAS
PubMed
Google Scholar
Nishihara H, Smit AFA, Okada N: Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 2006, 16: 864-874. 10.1101/gr.5255506.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie X, Kamal M, Lander ES: A family of conserved noncoding elements derived from an ancient transposable element. P Natl Acad Sci USA. 2006, 103: 11659-11664. 10.1073/pnas.0604768103.
Article
CAS
Google Scholar
Smith JJ, Sumiyama K, Amemiya CT: A living fossil in the genome of a living fossil: Harbinger transposons in the coelacanth genome. Mol Biol Evo. 2012, 29: 985-993. 10.1093/molbev/msr267.
Article
CAS
Google Scholar
Sudarto , Lalu XC, Kosen JD, Tjakrawidjaja AH, Kusumah RV, Sadhotomo B, Kadarusman , Pouyaud L, Slembrouck J, Paradis E: Mitochondrial genomic divergence in coelacanths (Latimeria): slow rate of evolution or recent speciation?. Mar Biol. 2010, 157: 2253-2262. 10.1007/s00227-010-1492-7.
Article
Google Scholar
Danke J, Miyake T, Powers T, Schein J, Shin H, Bosdet I, Erdmann M, Caldwell R, Amemiya CT: Genome resource for the Indonesian coelacanth, Latimeria menadoensis. J Exp Zool Part B. 2004, 301: 228-234.
Article
Google Scholar
Makapedua DM, Barucca M, Forconi M, Antonucci N, Bizzaro D, Amici A, Carradori MR, Olmo E, Canapa A: Genome size, GC percentage and 5mC level in the Indonesian coelacanth Latimeria menadoensis. Mar Genom. 2011, 4: 167-172. 10.1016/j.margen.2011.04.001.
Article
Google Scholar
Amemiya CT, Alfőldi J, Lee A, Fan S, Brinkmann H, Maccallum I, Braasch I, Manousaki T, Schneider I, Rohner N, Organ C, Chalopin D, Smith J, Robinson M, Dorrington R, Gerdol M, Aken B, Biscotti M, Barucca M, Baurain D, Berlin A, Blatch G, Buonocore F, Burmester T, Campbell M, Canapa A, Christoffels A, De Moro G, Edkins A, Fan L: The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013, 496: 311-316. 10.1038/nature12027.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011, 29: 644-652. 10.1038/nbt.1883.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S: Using the miraEST Assembler for Reliable and Automated mRNA Transcript Assembly and SNP Detection in Sequenced ESTs. Genome Res. 2004, 14: 1147-1159. 10.1101/gr.1917404.
Article
PubMed Central
CAS
PubMed
Google Scholar
O’Neil S, Dzurisin J, Carmichael R, Lobo N, Emrich S, Hellmann J: Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. BMC Genomics. 2010, 11: 310-10.1186/1471-2164-11-310.
Article
PubMed Central
PubMed
Google Scholar
Ewen-Campen B, Shaner N, Panfilio K, Suzuki Y, Roth S, Extavour C: The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics. 2011, 12: 61-10.1186/1471-2164-12-61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation sequencing data. Genomics. 2010, 95: 315-327. 10.1016/j.ygeno.2010.03.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lanfranchi G, Muraro T, Caldara F, Pacchioni B, Pallavicini A, Pandolfo D, Toppo S, Trevisan S, Scarso S, Valle G: Identification of 4370 expressed sequence tags from a 3′-end-specific cDNA library of human skeletal muscle by DNA sequencing and filter hybridization. Genome Res. 1996, 6: 35-42. 10.1101/gr.6.1.35.
Article
CAS
PubMed
Google Scholar
Mardis ER: The impact of next-generation sequencing technology on genetics. Trends Genet. 2008, 24: 133-141. 10.1016/j.tig.2007.12.007.
Article
CAS
PubMed
Google Scholar
Morozova O, Marra MA: Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008, 92: 255-264. 10.1016/j.ygeno.2008.07.001.
Article
CAS
PubMed
Google Scholar
Zhang J, Chiodini R, Badr A, Zhang G: The impact of next-generation sequencing on genomics. J Genet Genomics. 2011, 38: 95-109. 10.1016/j.jgg.2011.02.003.
Article
PubMed Central
PubMed
Google Scholar
Ekblom R, Galindo J: Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011, 107: 1-15. 10.1038/hdy.2010.152.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pallen MJ, Loman NJ, Penn CW: High-throughput sequencing and clinical microbiology: Progress, opportunities and challenges. Curr Opin Microbiol. 2010, 13: 625-631. 10.1016/j.mib.2010.08.003.
Article
CAS
PubMed
Google Scholar
Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N: What can exome sequencing do for you?. J Med Genet. 2011, 48: 580-589. 10.1136/jmedgenet-2011-100223.
Article
CAS
PubMed
Google Scholar
Meyerson M, Gabriel S, Getz G: Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010, 11: 685-696. 10.1038/nrg2841.
Article
CAS
PubMed
Google Scholar
Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009, 10: 57-63. 10.1038/nrg2484.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, Chiari Y, Belkhir K, Ranwez V, Galtier N: Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Resour. 2012, 12: 834-845. 10.1111/j.1755-0998.2012.03148.x.
Article
CAS
PubMed
Google Scholar
Martin JA, Wang Z: Next-generation transcriptome assembly. Nat Rev Genet. 2011, 12: 671-682. 10.1038/nrg3068.
Article
CAS
PubMed
Google Scholar
Feldmeyer B, Wheat C, Krezdorn N, Rotter B, Pfenninger M: Short read Illumina data for the de novo assembly of a non-model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics. 2011, 12: 317-10.1186/1471-2164-12-317.
Article
PubMed Central
PubMed
Google Scholar
Kumar S, Blaxter M: Comparing assemblers for 454 transcriptome data. BMC Genomics. 2010, 11: 571-10.1186/1471-2164-11-571.
Article
PubMed Central
PubMed
Google Scholar
Gordon AL: Coelacanth populations may go with the flow. Nature. 1998, 395: 634-
Article
CAS
Google Scholar
Benton MJ, Donoghue PCJ: Paleontological evidence to date the tree of life. Mol Biol Evo. 2007, 24: 26-53.
Article
CAS
Google Scholar
Gould SJ, Vrba ES: Exaptation - a missing term in the science of form. Paleobiology. 1982, 8: 4-15.
Google Scholar
Wicker T, Robertson JS, Schulze SR, Feltus FA, Magrini V, Morrison JA, Mardis ER, Wilson RK, Peterson DG, Paterson AH, Ivarie R: The repetitive landscape of the chicken genome. Genome Res. 2005, 15: 126-136. 10.1101/gr.2438005.
Article
PubMed Central
PubMed
Google Scholar
Han G-Z, Worobey M: An endogenous foamy-like viral element in the coelacanth genome. PLoS Pathog. 2012, 8: e1002790-10.1371/journal.ppat.1002790.
Article
PubMed Central
CAS
PubMed
Google Scholar
Balhorn R: The protamine family of sperm nuclear proteins. Genome Biol. 2007, 8: 227-10.1186/gb-2007-8-9-227.
Article
PubMed Central
PubMed
Google Scholar
Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I: Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. P Natl Acad Sci USA. 2005, 102: 2808-2813. 10.1073/pnas.0406060102.
Article
CAS
Google Scholar
Kemphues KJ, Kaufman TC, Raff RA, Raff EC: The testis-specific β-tubulin subunit in Drosophila melanogaster has multiple functions in spermatogenesis. Cell. 1982, 31: 655-670. 10.1016/0092-8674(82)90321-X.
Article
CAS
PubMed
Google Scholar
Villasante A, Wang D, Dobner P, Dolph P, Lewis SA, Cowan NJ: Six mouse alpha-tubulin mRNAs encode five distinct isotypes: testis-specific expression of two sister genes. Mol Cell Biol. 1986, 6: 2409-2419.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanaka H, Baba T: Gene expression in spermiogenesis. Cell Mol Life Sci. 2005, 62: 344-354. 10.1007/s00018-004-4394-y.
Article
CAS
PubMed
Google Scholar
Forconi M, Canapa A, Barucca M, Biscotti MA, Buonocore F, Fausto AM, Makapedua DM, Pallavicini A, Gerdol M, De Moro G, Scapigliati G, Olmo E, Schartl M: Characterization of sex determination and sex differentiation genes in Latimeria. PLoS One. 2013, 8: e56006-10.1371/journal.pone.0056006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21: 3674-3676. 10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar
Zdobnov EM, Apweiler R: InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001, 17: 847-848. 10.1093/bioinformatics/17.9.847.
Article
CAS
PubMed
Google Scholar