Barrett AJ: Cellular proteolysis - an overview. Ann NY Acad Sci. 1992, 674: 1-15. 10.1111/j.1749-6632.1992.tb27472.x.
Article
CAS
PubMed
Google Scholar
Davies DR: The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem. 1990, 19: 189-215. 10.1146/annurev.bb.19.060190.001201.
Article
CAS
PubMed
Google Scholar
Rawlings ND, Barrett AJ: MEROPS: the peptidase database. Nucleic Acids Res. 1999, 27 (1): 325-331. 10.1093/nar/27.1.325.
Article
PubMed Central
CAS
PubMed
Google Scholar
John K: Aspartic proteinases and their inhibitors. FEBS Advanced Course. Edited by: Kostka V. 1985, Berlin: Walter de Gruyter, 1-17.
Google Scholar
Flotman B: Comments on the nomenclature of aspartic proteinases. FEBS Advanced Course. Edited by: Kostka V. 1985, Berlin: Walter de Gruyter, 19-26.
Google Scholar
Simoes I, Faro C: Structure and function of plant aspartic proteinases. Eur J Biochem. 2004, 271 (11): 2067-2075. 10.1111/j.1432-1033.2004.04136.x.
Article
CAS
PubMed
Google Scholar
Faro C, Gal S: Aspartic proteinase content of the Arabidopsis genome. Curr Protein Pept Sc. 2005, 6 (6): 493-500. 10.2174/138920305774933268.
Article
CAS
Google Scholar
Mutlu A, Gal S: Plant aspartic proteinases: enzymes on the way to a function. Physiol Plantarum. 1999, 105 (3): 569-576. 10.1034/j.1399-3054.1999.105324.x.
Article
CAS
Google Scholar
Chen FQ, Foolad MR: Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol. 1997, 35 (6): 821-831. 10.1023/A:1005833207707.
Article
CAS
PubMed
Google Scholar
Prasad BD, Creissen G, Lamb C, Chattoo BB: Heterologous expression and characterization of recombinant OsCDR1, a rice aspartic proteinase involved in disease resistance. Protein Expres Purif. 2010, 72 (2): 169-174. 10.1016/j.pep.2010.03.018.
Article
CAS
Google Scholar
Xia YJ, Suzuki H, Borevitz J, Blount J, Guo ZJ, Patel K, Dixon RA, Lamb C: An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 2004, 23 (4): 980-988. 10.1038/sj.emboj.7600086.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007, 449 (7161): 463-465. 10.1038/nature06148.
Article
CAS
PubMed
Google Scholar
Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. Plos One. 2007, 2 (12): e1326-10.1371/journal.pone.0001326.
Article
PubMed Central
PubMed
Google Scholar
Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H: A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science. 2002, 296 (5565): 92-100. 10.1126/science.1068275.
Article
CAS
PubMed
Google Scholar
Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006, 313 (5793): 1596-1604. 10.1126/science.1128691.
Article
CAS
PubMed
Google Scholar
Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000, 290 (5499): 2105-2110. 10.1126/science.290.5499.2105.
Article
CAS
PubMed
Google Scholar
Zhang YC, Mao LY, Wang H, Brocker C, Yin XJ, Vasiliou V, Fei ZJ, Wang XP: Genome-wide identification and analysis of grape aldehyde dehydrogenase (ALDH) gene superfamily. Plos One. 2012, 7 (2): e32153-10.1371/journal.pone.0032153.
Article
PubMed Central
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23 (21): 2947-2948. 10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Ge XC, Dietrich C, Matsuno M, Li GJ, Berg H, Xia YJ: An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep. 2005, 6 (3): 282-288. 10.1038/sj.embor.7400357.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yao X, Xiong W, Ye TT, Wu Y: Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. J Exp Bot. 2012, 63 (7): 2579-2593. 10.1093/jxb/err433.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28 (10): 2731-2739. 10.1093/molbev/msr121.
Article
PubMed Central
CAS
PubMed
Google Scholar
Letunic I, Doerks T, Bork P: SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40 (D1): D302-D305. 10.1093/nar/gkr931.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ren J, Wen LP, Gao XJ, Jin CJ, Xue Y, Yao XB: DOG 1.0: illustrator of protein domain structures. Cell Res. 2009, 19 (2): 271-273. 10.1038/cr.2009.6.
Article
CAS
PubMed
Google Scholar
Rice P, Longden I, Bleasby A: EMBOSS: the European molecular biology open software suite. Trends Genet. 2000, 16 (6): 276-277. 10.1016/S0168-9525(00)02024-2.
Article
CAS
PubMed
Google Scholar
Guo AY, Zhu QH, Chen X, Luo JC: GSDS: a gene structure display server. Yi Chuan. 2007, 29 (8): 1023-1026. 10.1360/yc-007-1023.
Article
CAS
PubMed
Google Scholar
Boneh U, Biton I, Zheng CL, Schwartz A, Ben-Ari G: Characterization of potential ABA receptors in Vitis vinifera. Plant Cell Rep. 2012, 31 (2): 311-321. 10.1007/s00299-011-1166-z.
Article
CAS
PubMed
Google Scholar
Upreti KK, Murti GSR: Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biol Plantarum. 2010, 54 (4): 730-734. 10.1007/s10535-010-0130-z.
Article
CAS
Google Scholar
Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C: Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomic. 2007, 7 (2): 111-134. 10.1007/s10142-006-0039-y.
Article
CAS
Google Scholar
Yang YZ, He MY, Zhu ZG, Li SX, Xu Y, Zhang CH, Singer SD, Wang YJ: Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol. 2012, 12: 140-10.1186/1471-2229-12-140.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li HE, Xu Y, Xiao Y, Zhu ZG, Xie XQ, Zhao HQ, Wang YJ: Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta. 2010, 232 (6): 1325-1337. 10.1007/s00425-010-1258-y.
Article
CAS
PubMed
Google Scholar
Wang LJ, Li SH: Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul. 2006, 48 (2): 137-144. 10.1007/s10725-005-6146-2.
Article
CAS
Google Scholar
Xiao HG, Nassuth A: Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V, riparia and V, vinifera. Plant Cell Rep. 2006, 25 (9): 968-977. 10.1007/s00299-006-0151-4.
Article
CAS
PubMed
Google Scholar
Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J: Evaluation of foliar resistance to uncinula necator in Chinese wild Vitis species. Vitis. 1995, 34 (3): 159-164.
Google Scholar
Volker HDC, Jose LR, Omaira P, Michael FT, James ZZ: Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 2002, 130: 639-648. 10.1104/pp.006478.
Article
Google Scholar
Mahbuba SAN: Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ. 2011, 34: 1345-1359. 10.1111/j.1365-3040.2011.02334.x.
Article
Google Scholar
Mohsen HLD, Romain F, Samia D, Celine L, Francois B, Abdelwahed G, Ahmed M, Said H: Identification and characterization of ‘rd22’ dehydration responsive gene in grapevine (Vitis vinifera L.). C R Biol. 2008, 331 (8): 569-578. 10.1016/j.crvi.2008.05.002.
Article
Google Scholar
Wang Q, Zhang YC, Gao M, Jiao C, Wang XP: Identification and expression analysis of a pathogen-responsive PR-1 gene from Chinese wild Vitis quinquangularis. Afr J Biotechnol. 2011, 10 (75): 17062-17069.
CAS
Google Scholar
Loake G: Plant cell death: unmasking the gatekeepers. Curr Biol. 2001, 11 (24): R1028-R1031. 10.1016/S0960-9822(01)00617-0.
Article
CAS
PubMed
Google Scholar
Brodersen P, Petersen M, Nielsen HB, Zhu SJ, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J: Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 2006, 47 (4): 532-546. 10.1111/j.1365-313X.2006.02806.x.
Article
CAS
PubMed
Google Scholar
Chong JL, Le Henanff G, Bertsch C, Walter B: Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. Plant Physiol Bioch. 2008, 46 (4): 469-481. 10.1016/j.plaphy.2007.09.010.
Article
CAS
Google Scholar
Zhang JJ, Wang YJ, Wang XP, Yang KQ, Yang JX: An improved method for rapidly extracting total RNA from Vitis. Fruit Sci. 2003, 53: 771-787.
Google Scholar
Kapushesky M, Emam I, Holloway E, Kurnosov P, Zorin A, Malone J, Rustici G, Williams E, Parkinson H, Brazma A: Gene expression atlas at the European bioinformatics institute. Nucleic Acids Res. 2010, 38: D690-D698. 10.1093/nar/gkp936.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana development. Nature Genet. 2005, 37 (5): 501-506. 10.1038/ng1543.
Article
CAS
PubMed
Google Scholar
Kenta NMK: A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992, 14 (4): 897-911. 10.1016/S0888-7543(05)80111-9.
Article
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Yong ND, May G: The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4: 10-10.1186/1471-2229-4-10.
Article
PubMed Central
PubMed
Google Scholar
Chen JJ, Ouyang YD, Wang L, Xie WB, Zhang QF: Aspartic proteases gene family in rice: gene structure and expression, predicted protein features and phylogenetic relation. Gene. 2009, 442 (1–2): 108-118.
Article
CAS
PubMed
Google Scholar
Barrett AJ, Rawlings ND, Woessner JF: Handbook of proteolytic enzymes. 2004, Amsterdam: Elsevier Academic Press
Google Scholar
Munoz FF, Mendieta JR, Pagano MR, Paggi RA, Daleo GR, Guevara MG: The swaposin-like domain of potato aspartic protease (StAsp-PSI) exerts antimicrobial activity on plant and human pathogens. Peptides. 2010, 31 (5): 777-785. 10.1016/j.peptides.2010.02.001.
Article
CAS
PubMed
Google Scholar
Bari R, Jones J: Role of plant hormones in plant defence responses. Plant Mol Biol. 2009, 69 (4): 473-488. 10.1007/s11103-008-9435-0.
Article
CAS
PubMed
Google Scholar
Finkelstein RR, Gampala SSL, Rock CD: Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002, 14: S15-S45.
PubMed Central
CAS
PubMed
Google Scholar
Xu GX, Guo CC, Shan HY, Kong HZ: Divergence of duplicate genes in exon-intron structure. P Natl Acad Sci USA. 2012, 109 (4): 1187-1192. 10.1073/pnas.1109047109.
Article
CAS
Google Scholar
Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 2008, 42: 443-461. 10.1146/annurev.genet.42.110807.091524.
Article
CAS
PubMed
Google Scholar
Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD: Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta. 2010, 232 (1): 219-234. 10.1007/s00425-010-1165-2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hurley I, Hale ME, Prince VE: Duplication events and the evolution of segmental identity. Evol Dev. 2005, 7 (6): 556-567. 10.1111/j.1525-142X.2005.05059.x.
Article
CAS
PubMed
Google Scholar
Kellis M, Birren BW, Lander ES: Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004, 428 (6983): 617-624. 10.1038/nature02424.
Article
CAS
PubMed
Google Scholar
Wolfe KH, Shields DC: Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997, 387 (6634): 708-713. 10.1038/42711.
Article
CAS
PubMed
Google Scholar
Li WY, Liu B, Yu LJ, Feng DR, Wang HB, Wang JF: Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol. 2009, 9: 90-10.1186/1471-2148-9-90.
Article
PubMed Central
PubMed
Google Scholar
Wapinski I, Pfeffer A, Friedman N, Regev A: Natural history and evolutionary principles of gene duplication in fungi. Nature. 2007, 449 (7158): 54-U36. 10.1038/nature06107.
Article
CAS
PubMed
Google Scholar
Smith AD, Sumazin P, Xuan ZY, Zhang MQ: DNA motifs in human and mouse proximal promoters predict tissue-specific expression. P Natl Acad Sci USA. 2006, 103 (16): 6275-6280. 10.1073/pnas.0508169103.
Article
CAS
Google Scholar
Wang DY, Sung HM, Wang TY, Huang CJ, Yang P, Chang T, Wang YC, Tseng DL, Wu JP, Lee TC: Expression evolution in yeast genes of single-input modules is mainly due to changes in transacting factors. Genome Res. 2007, 17 (8): 1161-1169. 10.1101/gr.6328907.
Article
PubMed Central
PubMed
Google Scholar
Xing Y, Ouyang ZQ, Kapur K, Scott MP, Wong WH: Assessing the conservation of mammalian gene expression using high-density exon arrays. Mol Biol Evol. 2007, 24 (6): 1283-1285. 10.1093/molbev/msm061.
Article
CAS
PubMed
Google Scholar
Chen ZJ, Ni ZF: Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays. 2006, 28 (3): 240-252. 10.1002/bies.20374.
Article
PubMed
Google Scholar
Rapp RA, Wendel JF: Epigenetics and plant evolution. New Phytol. 2005, 168 (1): 81-91. 10.1111/j.1469-8137.2005.01491.x.
Article
CAS
PubMed
Google Scholar
Zhang XY, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen HM, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE: Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell. 2006, 126 (6): 1189-1201. 10.1016/j.cell.2006.08.003.
Article
CAS
PubMed
Google Scholar
Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 2007, 39 (1): 61-69. 10.1038/ng1929.
Article
CAS
PubMed
Google Scholar
Blanc G, Wolfe KH: Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell. 2004, 16 (7): 1679-1691. 10.1105/tpc.021410.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang JZ: Evolution by gene duplication: an update. Trends Ecol Evol. 2003, 18 (6): 292-298. 10.1016/S0169-5347(03)00033-8.
Article
Google Scholar
Dunn BM: Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev. 2002, 102 (12): 4431-4458. 10.1021/cr010167q.
Article
CAS
PubMed
Google Scholar
Timotijevic GS, Milisavljevic MD, Radovic SR, Konstantinovic MM, Maksimovic VR: Ubiquitous aspartic proteinase as an actor in the stress response in buckwheat. J Plant Physiol. 2010, 167 (1): 61-68. 10.1016/j.jplph.2009.06.017.
Article
CAS
PubMed
Google Scholar
Wang YP, Wang XY, Tang HB, Tan X, Ficklin SP, Feltus FA, Paterson AH: Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. Plos One. 2011, 6 (12): e28150-10.1371/journal.pone.0028150.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang HB, Wang XY, Bowers J, Paterson A, Lisch D, Freeling M: Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 2008, 148: 1772-1781. 10.1104/pp.108.124867.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang YC, Gao M, Singer SD, Fei ZJ, Wang H, Wang XP: Genome-wide identification and analysis of the tify gene family in grape. Plos One. 2012, 7 (9): e44465-10.1371/journal.pone.0044465.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ling J, Jiang WJ, Zhang Y, Yu HJ, Mao ZC, Gu XF, Huang SW, Xie BY: Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics. 2011, 12: 471-10.1186/1471-2164-12-471.
Article
PubMed Central
CAS
PubMed
Google Scholar
Timotijevic GS, Milisavljevic MD, Radovic SR, Konstantinovic MM, Maksimovic VR: Seed-specific aspartic proteinase feap12 from buckwheat (Fagopyrum esculentum Moench). Arch Biol Sci. 2010, 62 (1): 143-151. 10.2298/ABS1001143T.
Article
Google Scholar
de Carvalho MHC, d’Arcy-Lameta A, Roy-Macauley H, Gareil M, El Maarouf H, Pham-Thi AT, Zuily-Fodil Y: Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility. FEBS Lett. 2001, 492 (3): 242-246. 10.1016/S0014-5793(01)02259-1.
Article
Google Scholar
Rodrigo I, Vera P, Conejero V: Degradation of tomato pathogenesis-related proteins by an endogenous 37-kDa aspartyl proteinase. Eur J Biochem. 1989, 184: 663-669. 10.1111/j.1432-1033.1989.tb15064.x.
Article
CAS
PubMed
Google Scholar
Rodrigo I, Vera P, Vanloon LC, Conejero V: Degradation of tobacco pathogenesis-related proteins – evidence for conserved mechanisms of degradation of pathogenesis-related proteins in plants. Plant Physiol. 1991, 95: 616-622. 10.1104/pp.95.2.616.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guevara MG, Oliva CR, Huarte M, Daleo GR: An aspartic protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers. Eur J Plant Pathol. 2002, 108 (2): 131-137. 10.1023/A:1015049629736.
Article
CAS
Google Scholar
Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu WP: Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol. 2008, 146 (1): 236-249.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beers EP: Programmed cell death during plant growth and development. Cell Death Differ. 1997, 4 (8): 649-661. 10.1038/sj.cdd.4400297.
Article
CAS
PubMed
Google Scholar
Terauchi K, Asakura T, Nishizawa NK, Matsumoto I, Abe K: Characterization of the genes for two soybean aspartic proteinases and analysis of their different tissue-dependent expression. Planta. 2004, 218 (6): 947-957. 10.1007/s00425-003-1179-0.
Article
CAS
PubMed
Google Scholar
Runebergroos P, Kervinen J, Kovaleva V, Raikhel NV, Gal S: The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in-vitro. Plant Physiol. 1994, 105 (1): 321-329. 10.1104/pp.105.1.321.
Article
CAS
Google Scholar
Ramalho-Santos M, Verissimo P, Cortes L, Samyn B, Van Beeumen J, Pires E, Faro C: Identification and proteolytic processing of procardosin A. Eur J Biochem. 1998, 255 (1): 133-138. 10.1046/j.1432-1327.1998.2550133.x.
Article
CAS
PubMed
Google Scholar
Schaaf A, Reski R, Decker EL: A novel aspartic proteinase is targeted to the secretory pathway and to the vacuole in the moss Physcomitrella patens. Eur J Cell Biol. 2004, 83 (4): 145-152. 10.1078/0171-9335-00371.
Article
CAS
PubMed
Google Scholar
Pereira CS, da Costa DS, Pereira S, Nogueira FD, Albuquerque PM, Teixeira J, Faro C, Pissarra J: Cardosins in postembryonic development of cardoon: towards an elucidation of the biological function of plant aspartic proteinases. Protoplasma. 2008, 232 (3–4): 203-213.
Article
CAS
PubMed
Google Scholar
Vieira M, Pissarra J, Verissimo P, Castanheira P, Costa Y, Pires E, Faro C: Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol. 2001, 45 (5): 529-539. 10.1023/A:1010675015318.
Article
CAS
PubMed
Google Scholar
da Costa DS, Pereira S, Moore I, Pissarra J: Dissecting cardosin B trafficking pathways in heterologous systems. Planta. 2010, 232 (6): 1517-1530. 10.1007/s00425-010-1276-9.
Article
CAS
PubMed
Google Scholar
Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F: The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta. 2004, 220 (1): 97-104. 10.1007/s00425-004-1328-0.
Article
CAS
PubMed
Google Scholar
Murakami S, Kondo Y, Nakano T, Sato F: Protease activity of CND41, a chloroplast nucleoid DNA-binding protein, isolated from cultured tobacco cells. FEBS Lett. 2000, 468 (1): 15-18. 10.1016/S0014-5793(00)01186-8.
Article
CAS
PubMed
Google Scholar
Nakano T, Sato F, Yamada Y: Analysis of nucleoid-proteins in tobacco chloroplasts. Plant Cell Physiol. 1993, 34 (6): 873-880.
CAS
Google Scholar
Diaz C, Lemaitre T, Christ A, Azzopardi M, Kato Y, Sato F, Morot-Gaudry JF, Le Dily F, Masclaux-Daubresse C: Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiol. 2008, 147 (3): 1437-1449. 10.1104/pp.108.119040.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kato Y, Yamamoto Y, Murakami S, Sato F: Post-translational regulation of CND41 protease activity in senescent tobacco leaves. Planta. 2005, 222 (4): 643-651. 10.1007/s00425-005-0011-4.
Article
CAS
PubMed
Google Scholar
Kato YSN, Yamamoto Y, Sato F: Regulation of senescence by aspartic protease: CND41 in tobacco and CND41 homologues in Arabidopsis. Photosynthesis: Fundamental Aspects to Global Perspectives: Proceedings of the 13th International Congress on Photosynthesis. Edited by: van der Est A, Bruce D, Lawrence BD. 2005, KS: Alliance Communications Group, 821-823.
Google Scholar
Paparelli E, Gonzali S, Parlanti S, Novi G, Giorgi FM, Licausi F, Kosmacz M, Feil R, Lunn JE, Brust H: Misexpression of a chloroplast aspartyl protease leads to severe growth defects and alters carbohydrate metabolism in Arabidopsis. Plant Physiol. 2012, 160 (3): 1237-1250. 10.1104/pp.112.204016.
Article
PubMed Central
CAS
PubMed
Google Scholar
Almeida CM, Pereira C, da Costa DS, Pereira S, Pissarra J, Simoes I, Faro C: Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii. Planta. 2012, 236 (1): 283-296. 10.1007/s00425-012-1605-2.
Article
CAS
PubMed
Google Scholar