Johnson SC, Treasurer JW, Bravo S, Nagasawa K, Kabata Z: A review of the impact of parasitic copepods on marine aquaculture. Zool Stud. 2004, 43 (2): 229-243.
Google Scholar
Costello MJ: How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proc R Soc B-Biol Sci. 2009, 276 (1672): 3385-3394. 10.1098/rspb.2009.0771.
Article
Google Scholar
Pike AW, Wadsworth SL: Sealice on salmonids: their biology and control. Adv Parasitol. 2000, 44: 233-337.
Article
Google Scholar
Grimnes A, Jakobsen PJ: The physiological effects of salmon lice infection on post-smolt of Atlantic salmon. J Fish Biol. 1996, 48 (6): 1179-1194. 10.1111/j.1095-8649.1996.tb01813.x.
Article
Google Scholar
Nagasawa K, Ishida Y, Ogura M, Tadokoro K, Hiramatsu K: The Abundance and Distribution of Lepeophtheirus Salmonis (Copepoda: Caligidae) on six Species of Pacific Salmon in Offshore Waters of the North Pacific Ocean and Bering Sea. Pathogens of Wild and Farmed Fish: Sea Lice. Volume 1. Edited by: Boxshall G, Defaye D. 1993, Chichester, West Sussex: Ellis Horwood Limited, 166-178. 1
Google Scholar
Beamish RJ, Neville CM, Sweeting RM, Ambers N: Sea lice on adult Pacific salmon in the coastal waters of Central British Columbia, Canada. Fish Res. 2005, 76 (2): 198-208. 10.1016/j.fishres.2005.06.007.
Article
Google Scholar
Beamish RJ, Wade J, Pennell W, Gordon E, Jones S, Neville C, Lange K, Sweeting R: A large, natural infection of sea lice on juvenile Pacific salmon in the Gulf Islands area of British Columbia, Canada. Aquaculture. 2009, 297 (1–4): 31-37.
Article
Google Scholar
Wagner GN, Fast MD, Johnson SC: Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends Parasitol. 2008, 24 (4): 176-183. 10.1016/j.pt.2007.12.010.
Article
CAS
PubMed
Google Scholar
Jones SRM, Kim E, Bennett W: Early development of resistance to the salmon louse, Lepeophtheirus salmonis (Krøyer), in juvenile pink salmon, Oncorhynchus gorbuscha (Walbaum). J Fish Dis. 2008, 31 (8): 591-600. 10.1111/j.1365-2761.2008.00933.x.
Article
CAS
PubMed
Google Scholar
Sutherland BJG, Jantzen SG, Sanderson DS, Koop BF, Jones SRM: Differentiating size-dependent responses of juvenile pink salmon (Oncorhynchus gorbuscha) to sea lice (Lepeophtheirus salmonis) infections. Comp Biochem Physiol D. 2011, 6 (2): 213-223.
Google Scholar
Bjørn PA, Finstad B, Kristoffersen R: Salmon lice infection of wild sea trout and Arctic char in marine and freshwaters: the effects of salmon farms. Aquacult Res. 2001, 32 (12): 947-962. 10.1046/j.1365-2109.2001.00627.x.
Article
Google Scholar
Bowers JM, Mustafa A, Speare DJ, Conboy GA, Brimacombe M, Sims DE, Burka JF: The physiological response of Atlantic salmon, Salmo salar L., to a single experimental challenge with sea lice, Lepeophtheirus salmonis. J Fish Dis. 2000, 23 (3): 165-172. 10.1046/j.1365-2761.2000.00225.x.
Article
Google Scholar
Pickering AD, Pottinger TG: Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiol Biochem. 1989, 7 (1–6): 253-258.
Article
CAS
PubMed
Google Scholar
Johnson SC, Albright LJ: Comparative susceptibility and histopathology of the response of naive Atlantic, chinook and coho salmon to experimental infection with Lepeophtheirus salmonis (Copepoda: Caligidae). Dis Aquat Organ. 1992, 14 (3): 179-193.
Article
Google Scholar
Krasnov A, Skugor S, Todorcevic M, Glover KA, Nilsen F: Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination. BMC Genomics. 2012, 13: 130-10.1186/1471-2164-13-130.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fast MD, Ross NW, Craft CA, Locke SJ, MacKinnon SL, Johnson SC: Lepeophtheirus salmonis: characterization of prostaglandin E-2 in secretory products of the salmon louse by RP-HPLC and mass spectrometry. Exp Parasitol. 2004, 107 (1–2): 5-13.
Article
CAS
PubMed
Google Scholar
Fast MD, Johnson SC, Eddy TD, Pinto D, Ross NW: Lepeophtheirus salmonis secretory/excretory products and their effects on Atlantic salmon immune gene regulation. Parasite Immunol. 2007, 29 (4): 179-189. 10.1111/j.1365-3024.2007.00932.x.
Article
CAS
PubMed
Google Scholar
Fast MD, Muise DM, Easy RE, Ross NW, Johnson SC: The effects of Lepeophtheirus salmonis infections on the stress response and immunological status of Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2006, 21 (3): 228-241. 10.1016/j.fsi.2005.11.010.
Article
CAS
PubMed
Google Scholar
Fast MD, Ross NW, Johnson SC: Prostaglandin E-2 modulation of gene expression in an Atlantic salmon (Salmo salar) macrophage-like cell line (SHK-1). Dev Comp Immunol. 2005, 29 (11): 951-963. 10.1016/j.dci.2005.03.007.
Article
CAS
PubMed
Google Scholar
Firth KJ, Johnson SC, Ross NW: Characterization of proteases in the skin mucus of Atlantic salmon (Salmo salar) infected with the salmon louse (Lepeophtheirus salmonis) and in whole-body louse homogenate. J Parasitol. 2000, 86 (6): 1199-1205.
Article
CAS
PubMed
Google Scholar
Jones SRM: The occurrence and mechanisms of innate immunity against parasites in fish. Dev Comp Immunol. 2001, 25 (8–9): 841-852.
Article
CAS
PubMed
Google Scholar
Jones SRM, Fast MD, Johnson SC, Groman DB: Differential rejection of salmon lice by pink and chum salmon: disease consequences and expression of proinflammatory genes. Dis Aquat Organ. 2007, 75 (3): 229-238.
Article
CAS
PubMed
Google Scholar
Skugor S, Glover KA, Nilsen F, Krasonov A: Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis). BMC Genomics. 2008, 9: 498-10.1186/1471-2164-9-498.
Article
PubMed Central
PubMed
Google Scholar
Tadiso TM, Krasnov A, Skugor S, Afanasyev S, Hordvik I, Nilsen F: Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition. BMC Genomics. 2011, 12: 141-10.1186/1471-2164-12-141.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rolff J, Siva-Jothy MT: Invertebrate ecological immunology. Science. 2003, 301 (5632): 472-475. 10.1126/science.1080623.
Article
CAS
PubMed
Google Scholar
Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, Bowman EP, Sgambellone NM, Chan CC, Caspi RR: Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med. 2008, 205 (4): 799-810. 10.1084/jem.20071258.
Article
CAS
PubMed Central
PubMed
Google Scholar
Medzhitov R, Schneider DS, Soares MP: Disease tolerance as a defense strategy. Science. 2012, 335 (6071): 936-941. 10.1126/science.1214935.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mustafa A, MacKinnon BM: Genetic variation in susceptibility of Atlantic salmon to the sea louse Caligus elongatus Nordmann, 1832. Can J Zool. 1999, 77 (8): 1332-1335. 10.1139/cjz-77-8-1332.
Article
Google Scholar
Glover KA, Skaala O, Nilsen F, Olsen R, Teale AJ, Taggart JB: Differing susceptibility of anadromous brown trout (Salmo trutta L.) populations to salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) infection. ICES J Mar Sci. 2003, 60 (5): 1139-1148. 10.1016/S1054-3139(03)00088-2.
Article
Google Scholar
Glover KA, Hamre LA, Skaala O, Nilsen F: A comparison of sea louse (Lepeophtheirus salmonis) infection levels in farmed and wild Atlantic salmon (Salmo salar L.) stocks. Aquaculture. 2004, 232 (1–4): 41-52.
Article
Google Scholar
Gjerde B, Odegard J, Thorland I: Estimates of genetic variation in the susceptibility of Atlantic salmon (Salmo salar) to the salmon louse Lepeophtheirus salmonis. Aquaculture. 2011, 314 (1–4): 66-72.
Article
CAS
Google Scholar
Jones CS, Lockyer AE, Verspoor E, Secombes CJ, Noble LR: Towards selective breeding of Atlantic salmon for sea louse resistance: approaches to identify trait markers. Pest Manag Sci. 2002, 58 (6): 559-568. 10.1002/ps.511.
Article
CAS
PubMed
Google Scholar
Braden LM, Barker DE, Koop BF, Jones SRM: Comparative defense-associated responses in salmon skin elicited by the ectoparasite Lepeophtheirus salmonis. Comp Biochem Physiol D. 2012, 7 (2): 100-109.
CAS
Google Scholar
Ángeles Esteban M: An overview of the immunological defenses in fish skin. ISRN Immunology. 2012, 2012: 853470-
Article
Google Scholar
Jantzen SG, Sanderson DS, von Schalburg KR, Yasuike M, Marass F, Koop BF: A 44 K microarray dataset of the changing transcriptome in developing Atlantic salmon (Salmo salar L.). BMC Res Notes. 2011, 4: 88-10.1186/1756-0500-4-88.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chain FJJ, Ilieva D, Evans BJ: Single-species microarrays and comparative transcriptomics. PLoS One. 2008, 3 (9): e3279-10.1371/journal.pone.0003279.
Article
PubMed Central
PubMed
Google Scholar
Kültz D: Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol. 2005, 67: 225-257. 10.1146/annurev.physiol.67.040403.103635.
Article
PubMed
Google Scholar
Sherr CJ, Roberts JM: Inhibitors of mammalian G(1) cyclin-dependent kinases. Genes Dev. 1995, 9 (10): 1149-1163. 10.1101/gad.9.10.1149.
Article
CAS
PubMed
Google Scholar
Hannon GJ, Beach D: p15(INK4B) is a potential effector of TGF-β-induced cell cycle arrest. Nature. 1994, 371 (6494): 257-261. 10.1038/371257a0.
Article
CAS
PubMed
Google Scholar
Boot RG, Blommaart EFC, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, Place A, Aerts J: Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001, 276 (9): 6770-6778. 10.1074/jbc.M009886200.
Article
CAS
PubMed
Google Scholar
Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA: Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004, 304 (5677): 1678-1682. 10.1126/science.1095336.
Article
CAS
PubMed
Google Scholar
Rich BE: IL-20: a new target for the treatment of inflammatory skin disease. Expert Opin Ther Targets. 2003, 7 (2): 165-174. 10.1517/14728222.7.2.165.
Article
CAS
PubMed
Google Scholar
Beer HD, Bittner M, Niklaus G, Munding C, Max N, Goppelt A, Werner S: The fibroblast growth factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair. Oncogene. 2005, 24 (34): 5269-5277. 10.1038/sj.onc.1208560.
Article
CAS
PubMed
Google Scholar
Nurminsky D, Magee C, Faverman L, Nurminskaya M: Regulation of chondrocyte differentiation by actin-severing protein adseverin. Dev Biol. 2007, 302 (2): 427-437. 10.1016/j.ydbio.2006.09.052.
Article
CAS
PubMed
Google Scholar
Vairapandi M, Balliet AG, Hoffman B, Liebermann DA: GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol. 2002, 192 (3): 327-338. 10.1002/jcp.10140.
Article
CAS
PubMed
Google Scholar
Fast MD, Ross NW, Mustafa A, Sims DE, Johnson SC, Conboy GA, Speare DJ, Johnson G, Burka JF: Susceptibility of rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon Oncorhynchus kisutch to experimental infection with sea lice Lepeophtheirus salmonis. Dis Aquat Organ. 2002, 52 (1): 57-68.
Article
PubMed
Google Scholar
Mordue AJ, Birkett MA: A review of host finding behaviour in the parasitic sea louse, Lepeophtheirus salmonis (Caligidae: Copepoda). J Fish Dis. 2009, 32 (1): 3-13. 10.1111/j.1365-2761.2008.01004.x.
Article
Google Scholar
Bjørn PA, Finstad B: The physiological effects of salmon lice infection on sea trout post smolts. Nord J Freshwat Res. 1997, 73: 60-72.
Google Scholar
Jakob E, Sweeten T, Bennett W, Jones SRM: Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka. Dis Aquat Organ. 2013, 106: 217-227. 10.3354/dao02642.
Article
CAS
PubMed
Google Scholar
Finstad B, Bjørn PA, Grimnes A, Hvidsten NA: Laboratory and field investigations of salmon lice Lepeophtheirus salmonis (Krøyer) infestation on Atlantic salmon (Salmo salar L.) post-smolts. Aquacult Res. 2000, 31 (11): 795-803. 10.1046/j.1365-2109.2000.00511.x.
Article
Google Scholar
Waite JC, Skokos D: Th17 response and inflammatory autoimmune diseases. Int J Inflamm. 2012, 2012: 819467-
Article
Google Scholar
Trey JE, Kushner I: The acute phase response and the hematopoietic system: the role of cytokines. Crit Rev Oncol Hematol. 1995, 21 (1–3): 1-18.
Article
CAS
PubMed
Google Scholar
Midwood KS, Williams LV, Schwarzbauer JE: Tissue repair and the dynamics of the extracellular matrix. Int J Biochem. 2004, 36 (6): 1031-1037. 10.1016/j.biocel.2003.12.003.
Article
CAS
Google Scholar
Nemeth E, Ganz T: Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006, 26: 323-342. 10.1146/annurev.nutr.26.061505.111303.
Article
CAS
PubMed
Google Scholar
Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T: IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004, 113 (9): 1271-1276. 10.1172/JCI200420945.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wessling-Resnick M: Iron homeostasis and the inflammatory response. Annu Rev Nutr. 2010, 30: 105-122. 10.1146/annurev.nutr.012809.104804.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T: Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003, 101 (7): 2461-2463. 10.1182/blood-2002-10-3235.
Article
CAS
PubMed
Google Scholar
Shi JS, Camus AC: Hepcidins in amphibians and fishes: antimicrobial peptides or iron-regulatory hormones?. Dev Comp Immunol. 2006, 30 (9): 746-755. 10.1016/j.dci.2005.10.009.
Article
CAS
PubMed
Google Scholar
Robertson LS: Expression in Fish of Hepcidin, a Putative Antimicrobial Peptide and Iron Regulatory Hormone. Proceedings of The Third Bilateral Conference Between the United States and Russia: Aquatic Animal Health: 12–20 July 2009; Sheperdstown, WV. 2011, USA: Michigan State University, 284-292.
Google Scholar
Barnes AC, Trewin B, Snape N, Kvennefors ECE, Baiano JCF: Two hepcidin-like antimicrobial peptides in barramundi Lates calcarifer exhibit differing tissue tropism and are induced in response to lipopolysaccharide. Fish Shellfish Immunol. 2011, 31 (2): 350-357. 10.1016/j.fsi.2011.05.027.
Article
CAS
PubMed
Google Scholar
Xu TJ, Sun YN, Shi G, Wang RX: Miiuy croaker hepcidin gene and comparative analyses reveal evidence for positive selection. PLoS One. 2012, 7 (4): e35449-10.1371/journal.pone.0035449.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rodrigues PNS, Vazquez-Dorado S, Neves JV, Wilson JM: Dual function of fish hepcidin: response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Dev Comp Immunol. 2006, 30 (12): 1156-1167. 10.1016/j.dci.2006.02.005.
Article
CAS
PubMed
Google Scholar
Hammer ND, Skaar EP: Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol. 2011, 65: 129-147. 10.1146/annurev-micro-090110-102851.
Article
CAS
PubMed
Google Scholar
Hood MI, Skaar EP: Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol. 2012, 10 (8): 525-537. 10.1038/nrmicro2836.
Article
CAS
PubMed
Google Scholar
Roy CN: Anemia of inflammation. ASH Education Program Book. 2010, 2010 (1): 276-280.
Google Scholar
Easy RH, Ross NW: Changes in Atlantic salmon (Salmo salar) epidermal mucus protein composition profiles following infection with sea lice (Lepeophtheirus salmonis). Comp Biochem Physiol D. 2009, 4 (3): 159-167.
Google Scholar
Allen JE, Wynn TA: Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 2011, 7 (5): e1002003-10.1371/journal.ppat.1002003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yoshida T, Nakamura H, Masutani H, Yodoi J: The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process. Ann N Y Acad Sci. 2005, 1055: 1-12. 10.1196/annals.1323.002.
Article
CAS
PubMed
Google Scholar
Chadzinska M, Baginski P, Kolaczkowska E, Savelkoul HFJ, Verburg-van Kemenade BML: Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation. Immunology. 2008, 125 (4): 601-610. 10.1111/j.1365-2567.2008.02874.x.
Article
CAS
PubMed Central
PubMed
Google Scholar
Teles RMB, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, Komisopoulou E, Kelly-Scumpia K, Chun R, Iyer SS, Sarno EN, Rea TH, Hewison M, Adams JS, Popper SJ, Relman DA, Stenger S, Bloom BR, Cheng GH, Modlin RL: Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science. 2013, 339 (6126): 1448-1453. 10.1126/science.1233665.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bieniasz PD: Intrinsic immunity: a front-line defense against viral attack. Nat Immunol. 2004, 5 (11): 1109-1115. 10.1038/ni1125.
Article
CAS
PubMed
Google Scholar
Jones S, Kim E, Dawe S: Experimental infections with Lepeophtheirus salmonis (Krøyer) on threespine sticklebacks, Gasterosteus aculeatus L., and juvenile Pacific salmon, Oncorhynchus spp. J Fish Dis. 2006, 29 (8): 489-495. 10.1111/j.1365-2761.2006.00742.x.
Article
CAS
PubMed
Google Scholar
R Development Core Team: R: a language and environment for statistical computing. 2012, Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/,
Google Scholar
Churchill GA: Fundamentals of experimental design for cDNA microarrays. Nat Genet. 2002, 32: 490-495. 10.1038/ng1031.
Article
CAS
PubMed
Google Scholar
Koop BF, von Schalburg KR, Leong J, Walker N, Lieph R, Cooper GA, Robb A, Beetz-Sargent M, Holt RA, Moore R, Brahmbhatt S, Rosner J, Rexroad CE, McGowan CR, Davidson WS: A salmonid EST genomic study: genes, duplications, phylogeny and microarrays. BMC Genomics. 2008, 9: 545-10.1186/1471-2164-9-545.
Article
PubMed Central
PubMed
Google Scholar
Sutherland BJG, Jantzen SG, Yasuike M, Sanderson DS, Koop BF, Jones SRM: Transcriptomics of coping strategies in free-swimming Lepeophtheirus salmonis (Copepoda) larvae responding to abiotic stress. Mol Ecol. 2012, 21 (24): 6000-6014. 10.1111/mec.12072.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002, 30 (4): e15-10.1093/nar/30.4.e15.
Article
PubMed Central
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4 (1): 44-57.
Article
CAS
Google Scholar
VENNY. An interactive tool for comparing lists with Venn Diagrams. [http://bioinfogp.cnb.csic.es/tools/venny/index.html],
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000, 132: 365-386.
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7): RESEARCH0034
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8 (2): R19-10.1186/gb-2007-8-2-r19.
Article
PubMed Central
PubMed
Google Scholar
Fast MD, Johnson SC, Jones SRM: Differential expression of the pro-inflammatory cytokines IL-1β-1, TNFα-1 and IL-8 in vaccinated pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon juveniles. Fish Shellfish Immun. 2007, 22 (4): 403-407. 10.1016/j.fsi.2006.06.012.
Article
CAS
Google Scholar