Lubzens E, Young G, Bobe J, Cerdà J: Oogenesis in teleosts: how fish eggs are formed. Gen Comp Endocrinol. 2010, 165: 367-389. 10.1016/j.ygcen.2009.05.022.
Article
CAS
PubMed
Google Scholar
DePamphilis ML, Kaneko KJ, Vassilev A: Activation Of Zygotic gene expression in mammals. Gene expression at the beginning of animal development, advances in developmental biology and biochemistry series, Volume 12. Edited by: M.L. D, PM W. 2002, Netherlands: Elsevier Science, 55-84.
Chapter
Google Scholar
Schier AF: The maternal-zygotic transition: death and birth of RNAs. Science. 2007, 316: 406-407. 10.1126/science.1140693.
Article
CAS
PubMed
Google Scholar
Mtango NR, Potireddy S, Latham KE: Oocyte quality and maternal control of development. Int Rev Cell Mol Biol. 2008, 268: 223-290.
Article
CAS
PubMed
Google Scholar
Fischer BE, Wasbrough E, Meadows LA, Randlet O, Dorus S, Karr TL, Russell S: Conserved properties of Drosophila and human spermatozoal mRNA repertoires. Proc Biol Sci. 2012, 279: 2636-2644. 10.1098/rspb.2012.0153.
Article
CAS
PubMed Central
PubMed
Google Scholar
Martins RP, Krawetz SA: RNA in human sperm. Asian J Androl. 2005, 7: 115-120. 10.1111/j.1745-7262.2005.00048.x.
Article
CAS
PubMed
Google Scholar
Rudel D, Sommer RJ: The evolution of developmental mechanisms. Dev Biol. 2003, 264: 15-37. 10.1016/S0012-1606(03)00353-1.
Article
CAS
PubMed
Google Scholar
Lawrence PA, Levine M: Mosaic and regulative development: two faces of one coin. Curr Biol. 2006, 16: R236-R239. 10.1016/j.cub.2006.03.016.
Article
CAS
PubMed
Google Scholar
De Renzis S, Elemento O, Tavazoie S, Wieschaus EF: Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol. 2007, 5: e117-10.1371/journal.pbio.0050117.
Article
PubMed Central
PubMed
Google Scholar
Mathavan S, Lee SG, Mak A, Miller LD, Murthy KR, Govindarajan KR, Tong Y, Wu YL, Lam SH, Yang H, Ruan Y, Korzh V, Gong Z, Liu ET, Lufkin T: Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet. 2005, 1: 260-276.
Article
CAS
PubMed
Google Scholar
Wieschaus E: Embryonic Transcription and the Control of Developmental Pathways. Genetics. 1996, 142: 5-10.
CAS
PubMed Central
PubMed
Google Scholar
Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN: The transition from maternal to embryonic control in the 2-cell mouse embryo. Embo J. 1982, 1: 681-686.
CAS
PubMed Central
PubMed
Google Scholar
Braude P, Bolton V, Moore S: Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature. 1988, 332: 459-461. 10.1038/332459a0.
Article
CAS
PubMed
Google Scholar
Hoffert KA, Anderson GB, Wildt DE, Roth TL: Transition from maternal to embryonic control of development in IVM/IVF domestic cat embryos. Mol Reprod Dev. 1997, 48: 208-215. 10.1002/(SICI)1098-2795(199710)48:2<208::AID-MRD8>3.0.CO;2-W.
Article
CAS
PubMed
Google Scholar
Frei RE, Schultz GA, Church RB: Qualitative and quantitative changes in protein synthesis occur at the 8-16-cell stage of embryogenesis in the cow. J Reprod Fertil. 1989, 86: 637-641. 10.1530/jrf.0.0860637.
Article
CAS
PubMed
Google Scholar
Kraeussling M, Wagner TU, Schartl M: Highly asynchronous and asymmetric cleavage divisions accompany early transcriptional activity in pre-blastula medaka embryos. PLoS One. 2011, 6: 7-
Article
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn. 1995, 203: 253-310. 10.1002/aja.1002030302.
Article
CAS
PubMed
Google Scholar
Howe JA, Newport JW: A developmental timer regulates degradation of cyclin E1 at the midblastula transition during Xenopus embryogenesis. Proc Natl Acad Sci U S A. 1996, 93: 2060-2064. 10.1073/pnas.93.5.2060.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sibon OC, Stevenson VA, Theurkauf WE: DNA-replication checkpoint control at the Drosophila midblastula transition. Nature. 1997, 388: 93-97. 10.1038/40439.
Article
CAS
PubMed
Google Scholar
Tadros W, Lipshitz HD: The maternal-to-zygotic transition: a play in two acts. Development. 2009, 136: 3033-3042. 10.1242/dev.033183.
Article
CAS
PubMed
Google Scholar
Solnica-Krezel L: Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol. 2005, 15: R213-R228. 10.1016/j.cub.2005.03.016.
Article
CAS
PubMed
Google Scholar
Stern CD: Vertebrate gastrulation. Curr Opin Genet Dev. 1992, 2: 556-561. 10.1016/S0959-437X(05)80171-6.
Article
CAS
PubMed
Google Scholar
Seeger M, Tear G, Ferres-Marco D, Goodman CS: Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron. 1993, 10: 409-426. 10.1016/0896-6273(93)90330-T.
Article
CAS
PubMed
Google Scholar
Wright AP, Fox AN, Johnson KG, Zinn K: Systematic screening of Drosophila deficiency mutations for embryonic phenotypes and orphan receptor ligands. PLoS One. 2010, 5: 0012288-10.1371/journal.pone.0012288.
Article
Google Scholar
Nusslein-Volhard C, Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 1980, 287: 795-801. 10.1038/287795a0.
Article
CAS
PubMed
Google Scholar
Amsterdam A, Hopkins N: Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 2006, 22: 473-478. 10.1016/j.tig.2006.06.011.
Article
CAS
PubMed
Google Scholar
Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nüsslein-Volhard C: The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 1996, 123: 1-36.
CAS
PubMed
Google Scholar
Alestrom P, Holter JL, Nourizadeh-Lillabadi R: Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol. 2006, 24: 15-21. 10.1016/j.tibtech.2005.11.004.
Article
PubMed
Google Scholar
Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzén A, Winer R, Knight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjøen T, Kuhl H, et al: The genome sequence of Atlantic cod reveals a unique immune system. Nature. 2011, 477: 207-210. 10.1038/nature10342.
Article
CAS
PubMed Central
PubMed
Google Scholar
Drivenes O, Taranger GL, Edvardsen RB: Gene expression profiling of Atlantic cod (Gadus morhua) embryogenesis using microarray. Mar Biotechnol. 2012, 14: 167-176. 10.1007/s10126-011-9399-y.
Article
CAS
PubMed
Google Scholar
Hall TE, Smith P, Johnston IA: Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol. 2004, 259: 255-270. 10.1002/jmor.10222.
Article
PubMed
Google Scholar
Wickramasinghe D, Becker S, Ernst MK, Resnick JL, Centanni JM, Tessarollo L, Grabel LB, Donovan PJ: Two CDC25 homologues are differentially expressed during mouse development. Development. 1995, 121: 2047-2056.
CAS
PubMed
Google Scholar
Edgar BA, Datar SA: Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila's early cell cycle program. Genes Dev. 1996, 10: 1966-1977. 10.1101/gad.10.15.1966.
Article
CAS
PubMed
Google Scholar
Tourret J, McKeon F: Tyrosine kinases wee1 and mik1 as effectors of DNA replication checkpoint control. Prog Cell Cycle Res. 1996, 2: 91-97.
Article
CAS
PubMed
Google Scholar
Hung LY, Tang CJ, Tang TK: Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Mol Cell Biol. 2000, 20: 7813-7825. 10.1128/MCB.20.20.7813-7825.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Roche KC, Wiechens N, Owen-Hughes T, Perkins ND: The FHA domain protein SNIP1 is a regulator of the cell cycle and cyclin D1 expression. Oncogene. 2004, 23: 8185-8195. 10.1038/sj.onc.1208025.
Article
CAS
PubMed
Google Scholar
Krishnan S, Horowitz S, Trievel RC: Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Chembiochem. 2011, 12: 254-263. 10.1002/cbic.201000545.
Article
CAS
PubMed
Google Scholar
Morris KV: RNA and the Regulation of Gene Expression: A Hidden Layer of Complexity. 2008, Norfolk: Caister Academic Press
Google Scholar
Hanai K, Furuhashi H, Yamamoto T, Akasaka K, Hirose S: RSF governs silent chromatin formation via histone H2Av replacement. PLoS Genet. 2008, 4: 1000011-10.1371/journal.pgen.1000011.
Article
Google Scholar
Sinha A, Faller DV, Denis GV: Bromodomain analysis of Brd2-dependent transcriptional activation of cyclin A. Biochem J. 2005, 387: 257-269. 10.1042/BJ20041793.
Article
CAS
PubMed Central
PubMed
Google Scholar
Denis GV, McComb ME, Faller DV, Sinha A, Romesser PB, Costello CE: Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines. J Proteome Res. 2006, 5: 502-511. 10.1021/pr050430u.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vassetzky Y, Hair A, Mechali M: Rearrangement of chromatin domains during development in Xenopus. Genes Dev. 2000, 14: 1541-1552.
CAS
PubMed Central
PubMed
Google Scholar
Schlingensiepen K-H, Wollnik F, Kunst M, Schlingensiepen R, Herdegen T, Brysch W: The role of Jun transcription factor expression and phosphorylation in neuronal differentiation, neuronal cell death, and plastic adaptationsin vivo. Cell Mol Neurobiol. 1994, 14: 487-505. 10.1007/BF02088833.
Article
CAS
PubMed
Google Scholar
Jacobs-Helber SM, Abutin RM, Tian C, Bondurant M, Wickrema A, Sawyer ST: Role of JunB in erythroid differentiation. J Biol Chem. 2002, 277: 4859-4866. 10.1074/jbc.M107243200.
Article
CAS
PubMed
Google Scholar
Bamforth SD, Braganca J, Eloranta JJ, Murdoch JN, Marques FI, Kranc KR, Farza H, Henderson DJ, Hurst HC, Bhattacharya S: Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet. 2001, 29: 469-474. 10.1038/ng768.
Article
CAS
PubMed
Google Scholar
Torgersen JS, Takle H, Andersen Ø: Differential spatial expression of mef2 paralogs during cardiac development in Atlantic cod (Gadus morhua). Comp Biochem Physiol B Biochem Mol Biol. 2011, 158: 181-187. 10.1016/j.cbpb.2010.11.006.
Article
PubMed
Google Scholar
Kageyama R, Ohtsuka T, Kobayashi T: The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development. 2007, 134: 1243-1251. 10.1242/dev.000786.
Article
CAS
PubMed
Google Scholar
Stafford DA, Monica SD, Harland RM: Follistatin interacts with Noggin in the development of the axial skeleton. Mech Dev. 2014, 134: 78-85.
Article
Google Scholar
Schweitzer J, Gimnopoulos D, Lieberoth BC, Pogoda HM, Feldner J, Ebert A, Schachner M, Becker T, Becker CG: Contactin1a expression is associated with oligodendrocyte differentiation and axonal regeneration in the central nervous system of zebrafish. Mol Cell Neurosci. 2007, 35: 194-207. 10.1016/j.mcn.2007.02.018.
Article
CAS
PubMed
Google Scholar
Shimoda Y, Watanabe K: Contactins: emerging key roles in the development and function of the nervous system. Cell Adh Migr. 2009, 3: 64-70. 10.4161/cam.3.1.7764.
Article
PubMed Central
PubMed
Google Scholar
Racher H, Hansen D: PUF-8, a Pumilio homolog, inhibits the proliferative fate in the Caenorhabditis elegans germline. G3. 2012, 2: 1197-1205. 2012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 2009, 139: 871-890. 10.1016/j.cell.2009.11.007.
Article
CAS
PubMed
Google Scholar
Wuebben EL, Mallanna SK, Cox JL, Rizzino A: Musashi2 is required for the self-renewal and pluripotency of embryonic stem cells. PLoS One. 2012, 7: 4-
Article
Google Scholar
Bree RT, McLoughlin S, Jin SW, McMeel OM, Stainier DY, Grealy M, Byrnes L: nanor, a novel zygotic gene, is expressed initially at the midblastula transition in zebrafish. Biochem Biophys Res Commun. 2005, 333: 722-728. 10.1016/j.bbrc.2005.05.168.
Article
CAS
PubMed
Google Scholar
Landthaler M, Yalcin A, Tuschl T: The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004, 14: 2162-2167. 10.1016/j.cub.2004.11.001.
Article
CAS
PubMed
Google Scholar
Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF: Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006, 312: 75-79. 10.1126/science.1122689.
Article
CAS
PubMed
Google Scholar
Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Aleström P, Mathavan S: Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res. 2011, 21: 1328-1338. 10.1101/gr.116012.110.
Article
CAS
PubMed Central
PubMed
Google Scholar
Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R: Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003, 17: 126-140. 10.1101/gad.224503.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bonnet A, Bevilacqua C, Benne F, Bodin L, Cotinot C, Liaubet L, Sancristobal M, Sarry J, Terenina E, Martin P, Tosser-Klopp G, Mandon-Pepin B: Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by laser capture microdissection. BMC Genomics. 2011, 12: 1471-2164.
Article
Google Scholar
Shen-Orr SS, Pilpel Y, Hunter CP: Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode. Genome Biol. 2010, 11: 2010-2011.
Article
Google Scholar
Gilbert I, Bissonnette N, Boissonneault G, Vallee M, Robert C: A molecular analysis of the population of mRNA in bovine spermatozoa. Reproduction. 2007, 133: 1073-1086. 10.1530/REP-06-0292.
Article
CAS
PubMed
Google Scholar
Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA: Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004, 429: 154-
Article
CAS
PubMed
Google Scholar
Harvey SA, Sealy I, Kettleborough R, Fenyes F, White R, Stemple D, Smith JC: Identification of the zebrafish maternal and paternal transcriptomes. Development. 2013, 140: 2703-2710. 10.1242/dev.095091.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ellingsen T, Strand C, Monsen E, Bogwald J, Dalmo RA: The ontogeny of complement component C3 in the spotted wolffish (Anarhichas minor Olafsen). Fish Shellfish Immunol. 2005, 18: 351-358. 10.1016/j.fsi.2004.09.002.
Article
CAS
PubMed
Google Scholar
Lovoll M, Kilvik T, Boshra H, Bogwald J, Sunyer JO, Dalmo RA: Maternal transfer of complement components C3-1, C3-3, C3-4, C4, C5, C7, Bf, and Df to offspring in rainbow trout (Oncorhynchus mykiss). Immunogenetics. 2006, 58: 168-179. 10.1007/s00251-006-0096-3.
Article
CAS
PubMed
Google Scholar
Wang Z, Zhang S, Wang G, An Y: Complement activity in the egg cytosol of zebrafish Danio rerio: evidence for the defense role of maternal complement components. PLoS One. 2008, 3: 0001463-10.1371/journal.pone.0001463.
Article
Google Scholar
Wang Z, Zhang S, Tong Z, Li L, Wang G: Maternal transfer and protective role of the alternative complement components in zebrafish Danio rerio. PLoS One. 2009, 4: 18-
Google Scholar
Seppola M, Johnsen H, Mennen S, Myrnes B, Tveiten H: Maternal transfer and transcriptional onset of immune genes during ontogenesis in Atlantic cod. Dev Comp Immunol. 2009, 33: 1205-1211. 10.1016/j.dci.2009.06.013.
Article
CAS
PubMed
Google Scholar
Swain P, Nayak SK: Role of maternally derived immunity in fish. Fish Shellfish Immunol. 2009, 27: 89-99. 10.1016/j.fsi.2009.04.008.
Article
CAS
PubMed
Google Scholar
Warga RM, Kane DA: A role for N-cadherin in mesodermal morphogenesis during gastrulation. Dev Biol. 2007, 310: 211-225. 10.1016/j.ydbio.2007.06.023.
Article
CAS
PubMed
Google Scholar
Gumbiner BM: Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005, 6: 622-634. 10.1038/nrm1699.
Article
CAS
PubMed
Google Scholar
Kishigami S, Mishina Y: BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev. 2005, 16: 265-278. 10.1016/j.cytogfr.2005.04.002.
Article
CAS
PubMed
Google Scholar
Hayward P, Kalmar T, Arias AM: Wnt/Notch signalling and information processing during development. Development. 2008, 135: 411-424. 10.1242/dev.000505.
Article
CAS
PubMed
Google Scholar
Hayflick JS, Wolfgang WJ, Forte MA, Thomas G: A unique Kex2-like endoprotease from Drosophila melanogaster is expressed in the central nervous system during early embryogenesis. J Neurosci. 1992, 12: 705-717.
CAS
PubMed
Google Scholar
Cadieux B, Chitramuthu BP, Baranowski D, Bennett HP: The zebrafish progranulin gene family and antisense transcripts. BMC Genomics. 2005, 6: 156-10.1186/1471-2164-6-156.
Article
PubMed Central
PubMed
Google Scholar
Masi T, Johnson AD: Axbrn-1: a maternal transcript encodes a POU transcription factor that is later expressed in the developing central nervous system of axolotl embryos. Dev Genes Evol. 2001, 211: 449-452. 10.1007/s004270100171.
Article
CAS
PubMed
Google Scholar
Krasnov A, Timmerhaus G, Schiøtz BL, Torgersen J, Afanasyev S, Iliev D, Jørgensen J, Takle H, Jørgensen SM: Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar L. Mol Immunol. 2011, 49: 163-174. 10.1016/j.molimm.2011.08.007.
Article
CAS
PubMed
Google Scholar
Krasnov A, Kileng O, Skugor S, Jorgensen SM, Afanasyev S, Timmerhaus G, Sommer AI, Jensen I: Genomic analysis of the host response to nervous necrosis virus in Atlantic cod (Gadus morhua) brain. Mol Immunol. 2013, 54: 443-452. 10.1016/j.molimm.2013.01.010.
Article
CAS
PubMed
Google Scholar
Alizadeh Z, Kageyama S, Aoki F: Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol Reprod Dev. 2005, 72: 281-290. 10.1002/mrd.20340.
Article
CAS
PubMed
Google Scholar
Ho L, Crabtree GR: Chromatin remodelling during development. Nature. 2010, 463: 474-484. 10.1038/nature08911.
Article
CAS
PubMed Central
PubMed
Google Scholar
Skjaerven KH, Olsvik PA, Finn RN, Holen E, Hamre K: Ontogenetic expression of maternal and zygotic genes in Atlantic cod embryos under ambient and thermally stressed conditions. Comp Biochem Physiol A Mol Integr Physiol. 2011, 159: 196-205. 10.1016/j.cbpa.2011.02.026.
Article
PubMed
Google Scholar
Felsenfeld G: Chromatin unfolds. Cell. 1996, 86: 13-19. 10.1016/S0092-8674(00)80073-2.
Article
CAS
PubMed
Google Scholar
Pearson JC, Lemons D, McGinnis W: Modulating Hox gene functions during animal body patterning. Nat Rev Genet. 2005, 6: 893-904. 10.1038/nrg1726.
Article
CAS
PubMed
Google Scholar
Wellik DM: Hox genes and vertebrate axial pattern. Curr Top Dev Biol. 2009, 88: 257-278.
Article
CAS
PubMed
Google Scholar
Gorodilov YN, Terjesen B, Krasnov A, Takle H: Description of Embryogenesis of Atlantic Cod Gadus morhua. Open Mar Biol J. 2008, 2: 43-53. 10.2174/1874450800802010043.
Article
Google Scholar
Krasnov A, Timmerhaus G, Afanasyev S, Jorgensen SM: Development and assessment of oligonucleotide microarrays for Atlantic salmon (Salmo salar L.). Comp Biochem Physiol Part D Genomics Proteomics. 2011, 6: 31-38. 10.1016/j.cbd.2010.04.006.
Article
PubMed
Google Scholar
Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV: OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 2013, 41: 24-10.1093/nar/gks904.
Article
Google Scholar
Johnsen H, Andersen Ø: Sex dimorphic expression of five dmrt genes identified in the Atlantic cod genome. The fish-specific dmrt2b diverged from dmrt2a before the fish whole-genome duplication. Gene. 2012, 505: 221-232. 10.1016/j.gene.2012.06.021.
Article
CAS
PubMed
Google Scholar