Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003, 1 (1): E5-
Article
PubMed Central
PubMed
Google Scholar
Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, Williams AE, Drought LG, Kwiatkowski DP, Baker DA, Cortes A, Llinas M: A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014, 507 (7491): 248-252. 10.1038/nature12920.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C, Dickens NJ, Religa AA, Bushell E, Graham AL, Cameron R, Kafsack BF, Williams AE, Llinas M, Berriman M, Billker O, Waters AP: A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature. 2014, 507 (7491): 253-257. 10.1038/nature12970.
Article
CAS
PubMed Central
PubMed
Google Scholar
Komaki-Yasuda K, Okuwaki M, Nagata K, Kawazu S, Kano S: Identification of a novel and unique transcription factor in the intraerythrocytic stage of Plasmodium falciparum. PLoS One. 2013, 8 (9): e74701-10.1371/journal.pone.0074701.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mok S, Liong KY, Lim EH, Huang X, Zhu L, Preiser PR, Bozdech Z: Structural polymorphism in the promoter of pfmrp2 confers Plasmodium falciparum tolerance to quinoline drugs. Mol Microbiol. 2014, 91 (5): 918-934. 10.1111/mmi.12505.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bartfai R, Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Janssen-Megens E, Kaan A, Treeck M, Gilberger TW, Francoijs KJ, Stunnenberg HG: H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathog. 2010, 6 (12): e1001223-10.1371/journal.ppat.1001223.
Article
CAS
PubMed Central
PubMed
Google Scholar
Petter M, Selvarajah SA, Lee CC, Chin WH, Gupta AP, Bozdech Z, Brown GV, Duffy MF: H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum. Mol Microbiol. 2013, 87 (6): 1167-1182. 10.1111/mmi.12154.
Article
CAS
PubMed
Google Scholar
Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Francoijs KJ, Treeck M, Gilberger TW, Stunnenberg HG, Bartfai R: H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome. Mol Microbiol. 2013, 87 (5): 1061-1073. 10.1111/mmi.12151.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gopalakrishnan AM, Nyindodo LA, Ross Fergus M, Lopez-Estrano C: Plasmodium falciparum: preinitiation complex occupancy of active and inactive promoters during erythrocytic stage. Exp Parasitol. 2009, 121 (1): 46-54. 10.1016/j.exppara.2008.09.016.
Article
CAS
PubMed
Google Scholar
Sims JS, Militello KT, Sims PA, Patel VP, Kasper JM, Wirth DF: Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. Eukaryot Cell. 2009, 8 (3): 327-338. 10.1128/EC.00340-08.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mokry M, Hatzis P, Schuijers J, Lansu N, Ruzius FP, Clevers H, Cuppen E: Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes. Nucleic Acids Res. 2012, 40 (1): 148-158. 10.1093/nar/gkr720.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shock JL, Fischer KF, DeRisi JL: Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle. Genome Biol. 2007, 8 (7): R134-10.1186/gb-2007-8-7-r134.
Article
PubMed Central
PubMed
Google Scholar
Balu B, Maher SP, Pance A, Chauhan C, Naumov AV, Andrews RM, Ellis PD, Khan SM, Lin JW, Janse CJ, Rayner JC, Adams JH: CCR4-associated factor 1 coordinates the expression of Plasmodium falciparum egress and invasion proteins. Eukaryot Cell. 2011, 10 (9): 1257-1263. 10.1128/EC.05099-11.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang DW, Rodriguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ: Emerging Views on the CTD Code. Genet Res Int. 2012, 2012: 347214-
PubMed Central
PubMed
Google Scholar
Kishore SP, Perkins SL, Templeton TJ, Deitsch KW: An unusual recent expansion of the C-terminal domain of RNA polymerase II in primate malaria parasites features a motif otherwise found only in mammalian polymerases. J Mol Evol. 2009, 68 (6): 706-714. 10.1007/s00239-009-9245-2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang C, Stiller JW: Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc Natl Acad Sci U S A. 2014, 111 (16): 5920-5925. 10.1073/pnas.1323616111.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bataille AR, Jeronimo C, Jacques PE, Laramee L, Fortin ME, Forest A, Bergeron M, Hanes SD, Robert F: A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell. 2012, 45 (2): 158-170. 10.1016/j.molcel.2011.11.024.
Article
CAS
PubMed
Google Scholar
Morris DP, Michelotti GA, Schwinn DA: Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans. J Biol Chem. 2005, 280 (36): 31368-31377. 10.1074/jbc.M501546200.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gupta AP, Chin WH, Zhu L, Mok S, Luah YH, Lim EH, Bozdech Z: Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. PLoS Pathog. 2013, 9 (2): e1003170-10.1371/journal.ppat.1003170.
Article
PubMed Central
PubMed
Google Scholar
Hu G, Llinas M, Li J, Preiser PR, Bozdech Z: Selection of long oligonucleotides for gene expression microarrays using weighted rank-sum strategy. BMC Bioinformatics. 2007, 8: 350-10.1186/1471-2105-8-350.
Article
PubMed Central
PubMed
Google Scholar
Versteeg R, van Schaik BD, van Batenburg MF, Roos M, Monajemi R, Caron H, Bussemaker HJ, van Kampen AH: The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res. 2003, 13 (9): 1998-2004. 10.1101/gr.1649303.
Article
CAS
PubMed Central
PubMed
Google Scholar
Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD: Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A. 1988, 85 (3): 836-840. 10.1073/pnas.85.3.836.
Article
CAS
PubMed Central
PubMed
Google Scholar
Eisenberg E, Levanon EY: Human housekeeping genes are compact. Trends Genet. 2003, 19 (7): 362-365. 10.1016/S0168-9525(03)00140-9.
Article
CAS
PubMed
Google Scholar
Bieberstein NI, Carrillo Oesterreich F, Straube K, Neugebauer KM: First exon length controls active chromatin signatures and transcription. Cell Rep. 2012, 2 (1): 62-68. 10.1016/j.celrep.2012.05.019.
Article
CAS
PubMed
Google Scholar
Egloff S, Murphy S: Cracking the RNA polymerase II CTD code. Trends Genet. 2008, 24 (6): 280-288. 10.1016/j.tig.2008.03.008.
Article
CAS
PubMed
Google Scholar
Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, Meisterernst M, Kremmer E, Eick D: Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science. 2007, 318 (5857): 1780-1782. 10.1126/science.1145977.
Article
CAS
PubMed
Google Scholar
Russell K, Hasenkamp S, Emes R, Horrocks P: Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics. 2013, 14: 267-10.1186/1471-2164-14-267.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cui L, Miao J: Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. Eukaryot Cell. 2010, 9 (8): 1138-1149. 10.1128/EC.00036-10.
Article
CAS
PubMed Central
PubMed
Google Scholar
Le Roch KG, Chung DW, Ponts N: Genomics and integrated systems biology in Plasmodium falciparum: a path to malaria control and eradication. Parasite Immunol. 2012, 34 (2–3): 50-60.
Article
CAS
PubMed Central
PubMed
Google Scholar
Duffy MF, Selvarajah SA, Josling GA, Petter M: The role of chromatin in Plasmodium gene expression. Cell Microbiol. 2012, 14 (6): 819-828. 10.1111/j.1462-5822.2012.01777.x.
Article
CAS
PubMed
Google Scholar
Croken MM, Nardelli SC, Kim K: Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol. 2012, 28 (5): 202-213. 10.1016/j.pt.2012.02.009.
Article
CAS
PubMed Central
PubMed
Google Scholar
Trelle MB, Salcedo-Amaya AM, Cohen AM, Stunnenberg HG, Jensen ON: Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. J Proteome Res. 2009, 8 (7): 3439-3450. 10.1021/pr9000898.
Article
CAS
PubMed
Google Scholar
Hoeijmakers WA, Stunnenberg HG, Bartfai R: Placing the Plasmodium falciparum epigenome on the map. Trends Parasitol. 2012, 28 (11): 486-495. 10.1016/j.pt.2012.08.006.
Article
CAS
PubMed
Google Scholar
Chaal BK, Gupta AP, Wastuwidyaningtyas BD, Luah YH, Bozdech Z: Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle. PLoS Pathog. 2010, 6 (1): e1000737-10.1371/journal.ppat.1000737.
Article
PubMed Central
PubMed
Google Scholar
Millar CB, Kurdistani SK, Grunstein M: Acetylation of yeast histone H4 lysine 16: a switch for protein interactions in heterochromatin and euchromatin. Cold Spring Harb Symp Quant Biol. 2004, 69: 193-200. 10.1101/sqb.2004.69.193.
Article
CAS
PubMed
Google Scholar
Zhao R, Nakamura T, Fu Y, Lazar Z, Spector DL: Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation. Nat Cell Biol. 2011, 13 (11): 1295-1304. 10.1038/ncb2341.
Article
CAS
PubMed Central
PubMed
Google Scholar
Xu X, Hoang S, Mayo MW, Bekiranov S: Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression. BMC Bioinformatics. 2010, 11: 396-
PubMed Central
PubMed
Google Scholar
Yu H, Zhu S, Zhou B, Xue H, Han JD: Inferring causal relationships among different histone modifications and gene expression. Genome Res. 2008, 18 (8): 1314-1324. 10.1101/gr.073080.107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Thompson NE, Steinberg TH, Aronson DB, Burgess RR: Inhibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J Biol Chem. 1989, 264 (19): 11511-11520.
CAS
PubMed
Google Scholar
Drogat J, Hermand D: Gene-specific requirement of RNA polymerase II CTD phosphorylation. Mol Microbiol. 2012, 84 (6): 995-1004. 10.1111/j.1365-2958.2012.08071.x.
Article
CAS
PubMed
Google Scholar
Guo Z, Stiller JW: Comparative genomics and evolution of proteins associated with RNA polymerase II C-terminal domain. Mol Biol Evol. 2005, 22 (11): 2166-2178. 10.1093/molbev/msi215.
Article
CAS
PubMed
Google Scholar
Guo Z, Stiller JW: Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics. 2004, 5: 69-10.1186/1471-2164-5-69.
Article
PubMed Central
PubMed
Google Scholar
Chapman RD, Heidemann M, Hintermair C, Eick D: Molecular evolution of the RNA polymerase II CTD. Trends Genet. 2008, 24 (6): 289-296. 10.1016/j.tig.2008.03.010.
Article
CAS
PubMed
Google Scholar
Thomas MC, Chiang CM: The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol. 2006, 41 (3): 105-178. 10.1080/10409230600648736.
Article
CAS
PubMed
Google Scholar
Yudkovsky N, Ranish JA, Hahn S: A transcription reinitiation intermediate that is stabilized by activator. Nature. 2000, 408 (6809): 225-229. 10.1038/35041603.
Article
CAS
PubMed
Google Scholar
Margaritis T, Holstege FC: Poised RNA polymerase II gives pause for thought. Cell. 2008, 133 (4): 581-584. 10.1016/j.cell.2008.04.027.
Article
CAS
PubMed
Google Scholar
Coudreuse D, van Bakel H, Dewez M, Soutourina J, Parnell T, Vandenhaute J, Cairns B, Werner M, Hermand D: A gene-specific requirement of RNA polymerase II CTD phosphorylation for sexual differentiation in S. pombe. Curr Biol. 2010, 20 (12): 1053-1064. 10.1016/j.cub.2010.04.054.
Article
CAS
PubMed
Google Scholar
Ponts N, Harris EY, Prudhomme J, Wick I, Eckhardt-Ludka C, Hicks GR, Hardiman G, Lonardi S, Le Roch KG: Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res. 2010, 20 (2): 228-238. 10.1101/gr.101063.109.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang Q, Siegel TN, Martins RM, Wang F, Cao J, Gao Q, Cheng X, Jiang L, Hon CC, Scheidig-Benatar C, Sakamoto H, Turner L, Jensen AT, Claes A, Guizetti J, Malmquist NA, Scherf A: Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria. Nature. 2014, 513 (7518): 431-435. 10.1038/nature13468.
Article
CAS
PubMed
Google Scholar
Clayton CE: Life without transcriptional control? From fly to man and back again (vol 21, pg 1881, 2002). EMBO J. 2002, 21 (14): 3917-3917.
Article
CAS
Google Scholar
Harlow E, Lane D: Monoclonal Antibodies. Antibodies: A laboratory Manual. 1988, Cold Spring Harbor: Cold Spring Harbor Laboratory, 196ff-
Google Scholar
Vieyres G, Dubuisson J, Patel AH: Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein. J Gen Virol. 2011, 92: 494-506. 10.1099/vir.0.028092-0.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dutta B, Adav SS, Koh CG, Lim SK, Meshorer E, Sze SK: Elucidating the temporal dynamics of chromatin-associated protein release upon DNA digestion by quantitative proteomic approach. J Proteomics. 2012, 75 (17): 5493-5506. 10.1016/j.jprot.2012.06.030.
Article
CAS
PubMed
Google Scholar
Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ, Treatman C, Wang H: PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009, 37 (Database issue): D539-D543.
Article
CAS
PubMed Central
PubMed
Google Scholar
Trager W, Jenson JB: Cultivation of malarial parasites. Nature. 1978, 273 (5664): 621-622. 10.1038/273621a0.
Article
CAS
PubMed
Google Scholar
Bohlander SK, Espinosa R, Lebeau MM, Rowley JD, Diaz MO: A Method for the rapid sequence-independent amplification of microdissected chromosomal material. Genomics. 1992, 13 (4): 1322-1324. 10.1016/0888-7543(92)90057-Y.
Article
CAS
PubMed
Google Scholar
Bozdech Z, Mok S, Gupta AP: DNA microarray-based genome-wide analyses of Plasmodium parasites. Methods Mol Biol. 2013, 923: 189-211.
Article
CAS
PubMed
Google Scholar
Edwards D: Non-linear normalization and background correction in one-channel cDNA microarray studies. Bioinformatics. 2003, 19 (7): 825-833. 10.1093/bioinformatics/btg083.
Article
CAS
PubMed
Google Scholar
Yang YH, Thorne NP: Normalization for two-color cDNA microarray data. Science and Statistics: A Festschrift for Terry Speed, Volume 40. Edited by: Goldstein DR. 2003, 403-418.
Chapter
Google Scholar