Fairless D: Biofuel: the little shrub that could–maybe. Nature. 2007, 449 (7163): 652-655.
PubMed
Google Scholar
Li L, Coppola E, Rine J, Miller JL, Walker D: Catalytic hydrothermal conversion of triglycerides to non-ester biofuels. Energy Fuels. 2010, 24 (2): 1305-1315.
CAS
Google Scholar
Bonnet S, Gheewala SH: Potential of Jatropha as an Energy Crop. Jatropha, Challenges for a New Energy Crop. 2012, New York: Springer, 571-582.
Google Scholar
Makkar H, Maes J, De Greyt W, Becker K: Removal and degradation of phorbol esters during pre-treatment and transesterification of Jatropha curcas oil. J Am Oil Chem Soc. 2009, 86 (2): 173-181.
CAS
Google Scholar
Sanderson K: Wonder weed plans fail to flourish. Nature. 2009, 461 (7262): 328-329.
CAS
PubMed
Google Scholar
Divakara B, Upadhyaya H, Wani S, Gowda C: Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy. 2010, 87 (3): 732-742.
CAS
Google Scholar
Ghosh A, Chikara J, Chaudhary D, Prakash AR, Boricha G, Zala A: Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas. J Plant Growth Regul. 2010, 29 (3): 307-315.
CAS
Google Scholar
Xu G, Luo R, Yao Y: Paclobutrazol improved the reproductive growth and the quality of seed oil of Jatropha curcas. J Plant Growth Regul. 2013, 32 (4): 875-883.
CAS
Google Scholar
Abdelgadir H, Jäger A, Johnson S, Van Staden J: Influence of plant growth regulators on flowering, fruiting, seed oil content, and oil quality of Jatropha curcas. S Afr J Bot. 2010, 76 (3): 440-446.
CAS
Google Scholar
Pan BZ, Xu ZF: Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul. 2011, 30 (2): 166-174.
CAS
Google Scholar
Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M: Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol. 2006, 142 (1): 54-62.
CAS
PubMed Central
PubMed
Google Scholar
Lindsay DL: Cytokinin-induced gene expression in Arabidopsis. PhD Thesis. 2006, Saskatoon: University of Saskatchewan
Google Scholar
Li X, Su Y, Zhao X, Li W, Gao X, Zhang X: Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene. 2010, 450 (1–2): 109-120.
CAS
PubMed
Google Scholar
Hanano S, Domagalska MA, Nagy F, Davis SJ: Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells. 2006, 11 (12): 1381-1392.
CAS
PubMed
Google Scholar
Riefler M, Novak O, Strnad M, Schmulling T: Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2006, 18 (1): 40-54.
CAS
PubMed Central
PubMed
Google Scholar
Gonzalez-Rizzo S, Crespi M, Frugier F: The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell. 2006, 18 (10): 2680-2693.
CAS
PubMed Central
PubMed
Google Scholar
Chang ST, Chen WS, Hsu CY, Yu HC, Du BS, Huang KL: Changes in cytokinin activities before, during and after floral initiation in Polianthes tuberosa. Plant Physiol Biochem. 1999, 37 (9): 679-684.
CAS
Google Scholar
Chen WS: Changes in cytokinins before and during early flower bud differentiation in lychee (Litchi chinensis Sonn.). Plant Physiol. 1991, 96 (4): 1203-1206.
CAS
PubMed Central
PubMed
Google Scholar
D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C: Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 2011, 65 (6): 972-979.
PubMed
Google Scholar
He YW, Loh CS: Induction of early bolting in Arabidopsis thaliana by triacontanol, cerium and lanthanum is correlated with increased endogenous concentration of isopentenyl adenosine (iPAdos). J Exp Bot. 2002, 53 (368): 505-512.
CAS
PubMed
Google Scholar
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T: Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003, 15 (11): 2532-2550.
CAS
PubMed Central
PubMed
Google Scholar
Venglat S, Sawhney VK: Benzylaminopurine induces phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants. Planta. 1996, 198 (3): 480-487.
CAS
PubMed
Google Scholar
Ohkawa K: Effects of gibberellins and benzylandenine on dormancy and flowering of Lilium speciosum. Sci Hortic. 1979, 10 (3): 255-260.
CAS
Google Scholar
Ravetta D, Palzkill D: The effect of growth regulators and apex removal on branching and flower bud production of jojoba. Ind Crops Prod. 1992, 1 (1): 47-55.
CAS
Google Scholar
Prat L, Botti C, Fichet T: Effect of plant growth regulators on floral differentiation and seed production in Jojoba (Simmondsia chinensis (Link) Schneider). Ind Crops Prod. 2008, 27 (1): 44-49.
CAS
Google Scholar
Negi SS, Olmo HP: Sex conversion in a male Vitis vinifera L. by a Kinin. Science. 1966, 152 (3729): 1624-1625.
CAS
PubMed
Google Scholar
Negi SS, Olmo HP: Certain embryological and biochemical aspects of cytokinin SD 8339 in converting sex of a male Vitis vinifera (Sylvestris). Am J Bot. 1972, 59 (8): 851-857.
CAS
Google Scholar
Takahashi H, Suge H, Saito T: Sex expression as affected by N6-benzylaminopurine in staminate inflorescence of Luffa cylindrica. Plant Cell Physiol. 1980, 21 (4): 525-536.
CAS
Google Scholar
Ghosh S, Basu P: Effect of some growth regulators on sex expression of Momordica charantia L. Sci Hortic. 1982, 17 (2): 107-112.
CAS
Google Scholar
Wakushima S, Yoshioka H, Sakurai N: Lateral female strobili production in a Japanese red pine (Pinus densiflora Sieb. Et Zucc.) clone by exogenous cytokinin application. J For Res. 1996, 1 (3): 143-148.
Google Scholar
Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z: Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics. 2010, 11 (1): 384-
PubMed Central
PubMed
Google Scholar
Logacheva MD, Kasianov AS, Vinogradov DV, Samigullin TH, Gelfand MS, Makeev VJ, Penin AA: De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics. 2011, 12 (1): 30-
CAS
PubMed Central
PubMed
Google Scholar
Edwards CE, Parchman TL, Weekley CW: Assembly, gene annotation and marker development using 454 floral transcriptome sequences in Ziziphus celata (Rhamnaceae), a highly endangered, Florida endemic plant. DNA Res. 2012, 19 (1): 1-9.
CAS
PubMed Central
PubMed
Google Scholar
Shi X, Gupta S, Lindquist IE, Cameron CT, Mudge J, Rashotte AM: Transcriptome analysis of cytokinin response in tomato leaves. PLoS One. 2013, 8 (1): e55090-
CAS
PubMed Central
PubMed
Google Scholar
Gupta S, Shi X, Lindquist IE, Devitt N, Mudge J, Rashotte AM: Transcriptome profiling of cytokinin and auxin regulation in tomato root. J Exp Bot. 2013, 64 (2): 695-704.
CAS
PubMed Central
PubMed
Google Scholar
Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto S, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena J: Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 2011, 18 (1): 65-76.
CAS
PubMed Central
PubMed
Google Scholar
Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y, Kohara M, Watanabe A, Yamada M, Aizu T, Toyoda A, Fujiyama A, Tabata S, Fukui K, Sato S: Upgraded genomic information of Jatropha curcas L. Plant Biotechnol. 2012, 29 (2): 123-130.
CAS
Google Scholar
Jiang H, Wu P, Zhang S, Song C, Chen Y, Li M, Jia Y, Fang X, Chen F, Wu G: Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One. 2012, 7 (5): e36522-
CAS
PubMed Central
PubMed
Google Scholar
King AJ, Li Y, Graham IA: Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. BioEnergy Res. 2011, 4 (3): 211-221.
Google Scholar
Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L, Vicentini R, Papes F, Moreira RC, Yunes JA, Campos FA, Silva MJD: Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics. 2010, 11 (1): 462-
PubMed Central
PubMed
Google Scholar
Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA, Singh KK, Madasamy P: Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics. 2010, 11 (1): 606-
PubMed Central
PubMed
Google Scholar
Chen MS, Wang GJ, Wang RL, Wang J, Song SQ, Xu ZF: Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci. 2011, 181 (6): 696-700.
CAS
PubMed
Google Scholar
Gomes K, Almeida T, Gesteira A, Lôbo I, Guimarães A, Miranda AB, Sluys MAV, Cruz RS, Cascardo J, Carels N: ESTs from seeds to assist the selective breeding of Jatropha curcas L. for oil and active compounds. Genomics Insights. 2010, 3 (1): 29-56.
CAS
PubMed Central
PubMed
Google Scholar
Gu K, Chiam H, Tian D, Yin Z: Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci. 2011, 180 (4): 642-649.
CAS
PubMed
Google Scholar
Xu R, Wang R, Liu A: Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass Bioenergy. 2011, 35 (5): 1683-1692.
CAS
Google Scholar
Natarajan P, Parani M: De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics. 2011, 12 (1): 191-
CAS
PubMed Central
PubMed
Google Scholar
Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res. 1999, 9 (9): 868-877.
CAS
PubMed Central
PubMed
Google Scholar
Rashotte AM, Carson SD, To JP, Kieber JJ: Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 2003, 132 (4): 1998-2011.
CAS
PubMed Central
PubMed
Google Scholar
Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang Y-H, Schaller GE, Loraine A, Kieber JJ: Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-seq in Arabidopsis. Plant Physiol. 2013, 162 (1): 272-294.
CAS
PubMed Central
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37 (1): 1-13.
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009, 4 (1): 44-57.
CAS
Google Scholar
Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T: Immediate‒early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome‒wide expression profiling reveal novel cytokinin‒sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 2005, 44 (2): 314-333.
CAS
PubMed
Google Scholar
Chory J, Reinecke D, Sim S, Washburn T, Brenner M: A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol. 1994, 104 (2): 339-347.
CAS
PubMed Central
PubMed
Google Scholar
Chin-Atkins AN, Craig S, Hocart CH, Dennis ES, Chaudhury AM: Increased endogenous cytokinin in the Arabidopsis amp1 mutant corresponds with de-etiolation responses. Planta. 1996, 198 (4): 549-556.
CAS
Google Scholar
Catterou M, Dubois F, Smets R, Vaniet S, Kichey T, Van Onckelen H, Sangwan‒Norreel BS, Sangwan RS: hoc: an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J. 2002, 30 (3): 273-287.
CAS
PubMed
Google Scholar
Hutchison CE, Kieber JJ: Cytokinin signaling in Arabidopsis. Plant Cell. 2002, 14 (Suppl 1): S47-S59.
CAS
PubMed Central
PubMed
Google Scholar
To JP, Kieber JJ: Cytokinin signaling: two-components and more. Trends Plant Sci. 2008, 13 (2): 85-92.
CAS
PubMed
Google Scholar
Hwang I, Sheen J: Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001, 413 (6854): 383-389.
CAS
PubMed
Google Scholar
Lee DJ, Park J-Y, Ku S-J, Ha Y-M, Kim S, Kim MD, Oh M-H, Kim J: Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol Genet Genomics. 2007, 277 (2): 115-137.
CAS
PubMed
Google Scholar
Salomé PA, To JPC, Kieber JJ, McClung CR: Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell. 2006, 18 (1): 55-69.
PubMed Central
PubMed
Google Scholar
Sakakibara H, Takei K, Hirose N: Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 2006, 11 (9): 440-448.
CAS
PubMed
Google Scholar
van Doorn WG, Celikel FG, Pak C, Harkema H: Delay of Iris flower senescence by cytokinins and jasmonates. Physiol Plant. 2013, 148 (1): 105-120.
CAS
PubMed
Google Scholar
Downs CG, Somerfield SD, Davey MC: Cytokinin treatment delays senescence but not sucrose loss in harvested broccoli. Postharvest Biol Tec. 1997, 11 (2): 93-100.
CAS
Google Scholar
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J: Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007, 445 (7128): 652-655.
CAS
PubMed
Google Scholar
Kakimoto T: CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science. 1996, 274 (5289): 982-985.
CAS
PubMed
Google Scholar
Kiba T, Taniguchi M, Imamura A, Ueguchi C, Mizuno T, Sugiyama T: Differential expression of genes for response regulators in response to cytokinins and nitrate in Arabidopsis thaliana. Plant Cell Physiol. 1999, 40 (7): 767-771.
CAS
PubMed
Google Scholar
D'Agostino IB, Deruère J, Kieber JJ: Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol. 2000, 124 (4): 1706-1717.
PubMed Central
PubMed
Google Scholar
Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T: Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature. 2001, 409 (6823): 1060-1063.
CAS
PubMed
Google Scholar
Sakakibara H, Taniguchi M, Sugiyama T: His-Asp phosphorelay signaling: a communication avenue between plants and their environment. Plant Mol Biol. 2000, 42 (2): 273-278.
CAS
PubMed
Google Scholar
Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T: In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A. 2004, 101 (23): 8821-8826.
CAS
PubMed Central
PubMed
Google Scholar
Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Kiba T, Ueguchi C, Sugiyama T, Mizuno T: Compilation and characterization of Arabiopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol. 1999, 40 (7): 733-742.
CAS
PubMed
Google Scholar
Kiba T, Aoki K, Sakakibara H, Mizuno T: Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol. 2004, 45 (8): 1063-1077.
CAS
PubMed
Google Scholar
Cui X, Luan S: A new wave of hormone research: crosstalk mechanisms. Mol Plant. 2012, 5 (5): 959-960.
CAS
PubMed
Google Scholar
Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S: Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 2004, 134 (4): 1555-1573.
CAS
PubMed Central
PubMed
Google Scholar
Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E: High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol. 2006, 16 (11): 1123-1127.
CAS
PubMed
Google Scholar
Dharmasiri N, Dharmasiri S, Estelle M: The F-box protein TIR1 is an auxin receptor. Nature. 2005, 435 (7041): 441-445.
CAS
PubMed
Google Scholar
Abel S, Theologis A: Early genes and auxin action. Plant Physiol. 1996, 111 (1): 9-17.
CAS
PubMed Central
PubMed
Google Scholar
Guilfoyle TJ: Auxin-regulated genes and promoters. New Compr Biochem. 1999, 33: 423-459.
CAS
Google Scholar
Liscum E, Reed JW: Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol. 2002, 49 (3–4): 387-400.
CAS
PubMed
Google Scholar
Ulmasov T, Hagen G, Guilfoyle TJ: Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci U S A. 1999, 96 (10): 5844-5849.
CAS
PubMed Central
PubMed
Google Scholar
Ulmasov T, Hagen G, Guilfoyle TJ: Dimerization and DNA binding of auxin response factors. Plant J. 2002, 19 (3): 309-319.
Google Scholar
Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU: Hormonal control of the shoot stem-cell niche. Nature. 2010, 465 (7301): 1089-1092.
CAS
PubMed
Google Scholar
Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG: Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell. 2006, 18 (12): 3399-3414.
CAS
PubMed Central
PubMed
Google Scholar
Achard P, Genschik P: Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot. 2009, 60 (4): 1085-1092.
CAS
PubMed
Google Scholar
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M: KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol. 2005, 15 (17): 1560-1565.
CAS
PubMed
Google Scholar
Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009, 324 (5930): 1068-1071.
CAS
PubMed Central
PubMed
Google Scholar
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E: Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009, 324 (5930): 1064-1068.
CAS
PubMed
Google Scholar
Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP: Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell. 2007, 19 (10): 3019-3036.
CAS
PubMed Central
PubMed
Google Scholar
Cowan AK, Cairns ALP, Bartels-Rahm B: Regulation of abscisic acid metabolism: towards a metabolic basis for abscisic acid-cytokinin antagonism. J Exp Bot. 1999, 50 (334): 595-603.
CAS
Google Scholar
Cowan A, Railton I: Cytokinins and ancymidol inhibit abscisic acid biosynthesis in Persea gratissima. J Plant Physiol. 1987, 130 (2): 273-277.
CAS
Google Scholar
El-Showk S, Ruonala R, Helariutta Y: Crossing paths: cytokinin signalling and crosstalk. Development. 2013, 140 (7): 1373-1383.
CAS
PubMed
Google Scholar
Hua J, Meyerowitz EM: Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998, 94 (2): 261-271.
CAS
PubMed
Google Scholar
Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ: Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J. 2003, 33 (2): 221-233.
CAS
PubMed
Google Scholar
Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P: EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell. 2003, 115 (6): 679-689.
CAS
PubMed
Google Scholar
Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR: EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 1999, 284 (5423): 2148-2152.
CAS
PubMed
Google Scholar
Cary AJ, Liu W, Howell SH: Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol. 1995, 107 (4): 1075-1082.
CAS
PubMed Central
PubMed
Google Scholar
Nam KH, Li J: BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell. 2002, 110 (2): 203-212.
CAS
PubMed
Google Scholar
Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC: BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell. 2002, 110 (2): 213-222.
CAS
PubMed
Google Scholar
Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY: BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science. 2008, 321 (5888): 557-560.
CAS
PubMed Central
PubMed
Google Scholar
He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY: BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science. 2005, 307 (5715): 1634-1638.
CAS
PubMed Central
PubMed
Google Scholar
Chini A, Fonseca S, Fernandez G, Adie B, Chico J, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano F, Ponce M, Micol JL, Solano R: The JAZ family of repressors is the missing link in jasmonate signalling. Nature. 2007, 448 (7154): 666-671.
CAS
PubMed
Google Scholar
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J: JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature. 2007, 448 (7154): 661-665.
CAS
PubMed
Google Scholar
Boatwright JL, Pajerowska‒Mukhtar K: Salicylic acid: an old hormone up to new tricks. Mol Plant Pathol. 2013, 14 (6): 623-634.
CAS
PubMed
Google Scholar
Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G: CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell. 2006, 18 (11): 2971-2984.
CAS
PubMed Central
PubMed
Google Scholar
Sawa M, Kay SA: GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2011, 108 (28): 11698-11703.
CAS
PubMed Central
PubMed
Google Scholar
Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J: GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 1999, 18 (17): 4679-4688.
CAS
PubMed Central
PubMed
Google Scholar
Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL: The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 1999, 20 (4): 433-445.
CAS
PubMed
Google Scholar
Azhakanandam S, Nole-Wilson S, Bao F, Franks RG: SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiol. 2008, 146 (3): 1165-1181.
CAS
PubMed Central
PubMed
Google Scholar
Krizek BA: AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol. 2009, 150 (4): 1916-1929.
CAS
PubMed Central
PubMed
Google Scholar
Baker SC, RobinsonBeers K, Villanueva JM, Gaiser JC, Gasser CS: Interactions among genes regulating ovule development in Arabidopsis thaliana. Genetics. 1997, 145 (4): 1109-1124.
CAS
PubMed Central
PubMed
Google Scholar
Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR: AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996, 8 (2): 155-168.
CAS
PubMed Central
PubMed
Google Scholar
Coen ES, Meyerowitz EM: The war of the whorls- genetic interactions controlling flower development. Nature. 1991, 353 (6339): 31-37.
CAS
PubMed
Google Scholar
Causier B, Schwarz-Sommer Z, Davies B: Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol. 2010, 21 (1): 73-79.
CAS
PubMed
Google Scholar
Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ: Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proc Natl Acad Sci U S A. 2007, 104 (3): 1081-1086.
CAS
PubMed Central
PubMed
Google Scholar
Han YY, Zhang C, Yang HB, Jiao YL: Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci U S A. 2014, 111 (18): 6840-6845.
CAS
PubMed Central
PubMed
Google Scholar
Yu M, Li X, Zhang X: Expression of AtIPT4 gene under the control of APETALA1 promoter results in abnormal flower and floral organ development. Chin Bull Bot. 2009, 44 (1): 59-68.
CAS
Google Scholar
Skoog F, Miller C: Chemical regularion of growth and organ formation in plant fissue cultured. Symp Soc Exp Biol. 1957, 11: 118-131.
CAS
PubMed
Google Scholar
Bartrina I, Otto E, Strnad M, Werner T, Schmülling T: Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011, 23 (1): 69-80.
CAS
PubMed Central
PubMed
Google Scholar
Motoyuki A, Hitoshi S, Lin S: Cytokinin oxidase regulates rice grain production. Science. 2005, 309 (5735): 741-745.
Google Scholar
Werner T, Motyka V, Strnad M, Schmülling T: Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A. 2001, 98 (18): 10487-10492.
CAS
PubMed Central
PubMed
Google Scholar
Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH: Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science. 1999, 283 (5407): 1541-1544.
CAS
PubMed
Google Scholar
Hu Y, Bao F, Li J: Promotive effect of brassinosteroids on cell division involves a distinct CycD3‒induction pathway in Arabidopsis. Plant J. 2008, 24 (5): 693-701.
Google Scholar
Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray JAH: Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci U S A. 2007, 104 (36): 14537-14542.
CAS
PubMed Central
PubMed
Google Scholar
Imai KK, Ohashi Y, Tsuge T, Yoshizumi T, Matsui M, Oka A, Aoyama T: The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. Plant Cell. 2006, 18 (2): 382-396.
CAS
PubMed Central
PubMed
Google Scholar
Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Van Isterdael G, Dhondt S, De Winter F, De Rybel B, Vuylsteke M, Veylder LD, Friml J, Inzé D, Grotewold E, Scarpella E, Sack F, Beemster GTS, Beeckman T: Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J. 2011, 30 (16): 3430-3441.
CAS
PubMed Central
PubMed
Google Scholar
Sutou S, Miwa K, Matsuura T, Kawasaki Y, Ohinata Y, Mitsui Y: Native tesmin is a 60-kilodalton protein that undergoes dynamic changes in its localization during spermatogenesis in mice. Biol Reprod. 2003, 68 (5): 1861-1869.
CAS
PubMed
Google Scholar
Andersen SU, Algreen-Petersen RG, Hoedl M, Jurkiewicz A, Cvitanich C, Braunschweig U, Schauser L, Oh S-A, Twell D, Jensen EØ: The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J Exp Bot. 2007, 58 (13): 3657-3670.
CAS
PubMed
Google Scholar
Sijacic P, Wang W, Liu Z: Recessive antimorphic alleles overcome functionally redundant loci to reveal TSO1 function in Arabidopsis flowers and meristems. PLoS Genet. 2011, 7 (11): e1002352-
CAS
PubMed Central
PubMed
Google Scholar
Hauser BA, Villanueva JM, Gasser CS: Arabidopsis TSO1 regulates directional processes in cells during floral organogenesis. Genetics. 1998, 150 (1): 411-423.
CAS
PubMed Central
PubMed
Google Scholar
Song JY, Leung T, Ehler LK, Wang C, Liu Z: Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats. Development. 2000, 127 (10): 2207-2217.
CAS
PubMed
Google Scholar
Hauser BA, He JQ, Park SO, Gasser CS: TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development. 2000, 127 (10): 2219-2226.
CAS
PubMed
Google Scholar
Santner A, Calderon-Villalobos LI, Estelle M: Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol. 2009, 5 (5): 301-307.
CAS
PubMed
Google Scholar
Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, Ori N, Eshed Y, Weiss D: Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell. 2005, 17 (1): 92-102.
CAS
PubMed Central
PubMed
Google Scholar
Weiss D, Ori N: Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 2007, 144 (3): 1240-1246.
CAS
PubMed Central
PubMed
Google Scholar
Moubayidin L, Di Mambro R, Sabatini S: Cytokinin–auxin crosstalk. Trends Plant Sci. 2009, 14 (10): 557-562.
CAS
PubMed
Google Scholar
Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J: Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci U S A. 2013, 110 (8): 3167-3172.
CAS
PubMed Central
PubMed
Google Scholar
Rodriguez MCS, Edsgärd D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J: Transcriptomes of the desiccation‒tolerant resurrection plant Craterostigma plantagineum. Plant J. 2010, 63 (2): 212-228.
CAS
PubMed
Google Scholar
Feng J, Meyer CA, Wang Q, Liu JS, Liu XS, Zhang Y: GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics. 2012, 28 (21): 2782-2788.
CAS
PubMed
Google Scholar
Poelchau MF, Reynolds JA, Denlinger DL, Elsik CG, Armbruster PA: A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genomics. 2011, 12 (1): 619-
CAS
PubMed Central
PubMed
Google Scholar
Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong CH, Liu ET, Ruan YJ: Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods. 2005, 2 (2): 105-111.
CAS
PubMed
Google Scholar
Zhang F, Guo H, Zheng H, Zhou T, Zhou Y, Wang S, Fang R, Qian W, Chen X: Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting rice stripe virus (RSV). BMC Genomics. 2010, 11 (1): 303-
PubMed Central
PubMed
Google Scholar
Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000, 16 (6): 276-277.
CAS
PubMed
Google Scholar
Chen Z, Xue C, Zhu S, Zhou F, Ling XB, Liu G, Chen L: GoPipe: streamlined gene ontology annotation for batch anonymous sequences with statistics. Prog Biochem Biophys. 2005, 32 (2): 187-190.
CAS
Google Scholar
Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010, 38 (Database issue): D355-D360.
CAS
PubMed Central
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5 (7): 621-628.
CAS
PubMed
Google Scholar
Wang L, Feng Z, Wang X, Wang X, Zhang X: DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010, 26 (1): 136-138.
PubMed
Google Scholar
Heyl A, Brault M, Frugier F, Kuderova A, Lindner A-C, Motyka V, Rashotte AM, Schwartzenberg KV, Vankova R, Schaller GE: Nomenclature for members of the two-component signaling pathway of plants. Plant Physiol. 2013, 161 (3): 1063-1065.
PubMed Central
PubMed
Google Scholar
Cheadle C, Vawter MP, Freed WJ, Becker KG: Analysis of microarray data using Z score transformation. J Mol Diagn. 2003, 5 (2): 73-81.
CAS
PubMed Central
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001, 25 (4): 402-408.
CAS
PubMed
Google Scholar