Bird A: The essentials of DNA methylation. Cell. 1992, 70: 5-8.
Article
CAS
PubMed
Google Scholar
Singal R, Ginder GD: DNA methylation. Blood. 1999, 93: 4059-4070.
CAS
PubMed
Google Scholar
El Osta A, Wolffe AP: DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr. 2000, 9: 63-75.
Article
CAS
PubMed
Google Scholar
Ohki I, Shimotake N, Fujita N, Nakao M, Shirakawa M: Solution structure of the methyl-CpG-binding domain of the methylation-dependent transcriptional repressor MBD1. EMBO J. 1999, 18: 6653-6661. 10.1093/emboj/18.23.6653.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wakefield RI, Smith BO, Nan X, Free A, Soteriou A, Uhrin D, Bird AP, Barlow PN: The solution structure of the domain from MeCP2 that binds to methylated DNA. J Mol Biol. 1999, 291: 1055-1065. 10.1006/jmbi.1999.3023.
Article
CAS
PubMed
Google Scholar
Ballestar E, Wolffe AP: Methyl-CpG-binding proteins. Targeting specific gene repression. Eur J Biochem. 2001, 268: 1-6. 10.1046/j.1432-1327.2001.01869.x.
Article
CAS
PubMed
Google Scholar
Nan X, Meehan RR, Bird A: Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 1993, 21: 4886-4892.
Article
PubMed Central
CAS
PubMed
Google Scholar
Daniel JM, Reynolds AB: The catenin p120(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol. 1999, 19: 3614-3623.
Article
PubMed Central
CAS
PubMed
Google Scholar
Prokhortchouk A, Hendrich B, Jorgensen H, Ruzov A, Wilm M, Georgiev G, Bird A, Prokhortchouk E: The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001, 15: 1613-1618. 10.1101/gad.198501.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wade PA: Methyl CpG-binding proteins and transcriptional repression. Bioessays. 2001, 23: 1131-1137. 10.1002/bies.10008.
Article
CAS
PubMed
Google Scholar
Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998, 393: 386-389. 10.1038/30764.
Article
CAS
PubMed
Google Scholar
Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A: MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet. 1999, 23: 58-61.
CAS
PubMed
Google Scholar
Ng HH, Jeppesen P, Bird A: Active repression of methylated genes by the chromosomal protein MBD1. Mol Cell Biol. 2000, 20: 1394-1406. 10.1128/MCB.20.4.1394-1406.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Amir RE, Van dV, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999, 23: 185-188. 10.1038/13810.
Article
CAS
PubMed
Google Scholar
Percy AK: Rett syndrome: clinical correlates of the newly discovered gene. Brain Dev. 2001, 23 (Suppl 1): S202-S205.
Article
PubMed
Google Scholar
Yusufzai TM, Wolffe AP: Functional consequences of Rett syndrome mutations on human MeCP2. Nucleic Acids Res. 2000, 28: 4172-4179. 10.1093/nar/28.21.4172.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kudo S, Nomura Y, Segawa M, Fujita N, Nakao M, Dragich J, Schanen C, Tamura M: Functional analyses of MeCP2 mutations associated with Rett syndrome using transient expression systems. Brain Dev. 2001, 23 (Suppl 1): S165-S173.
Article
PubMed
Google Scholar
Nan X, Bird A: The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome. Brain Dev. 2001, 23 (Suppl 1): S32-S37.
Article
PubMed
Google Scholar
Guy J, Hendrich B, Holmes M, Martin JE, Bird A: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet. 2001, 27: 322-326. 10.1038/85899.
Article
CAS
PubMed
Google Scholar
Chen RZ, Akbarian S, Tudor M, Jaenisch R: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001, 27: 327-331. 10.1038/85906.
Article
CAS
PubMed
Google Scholar
Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron. 2002, 35: 243-254. 10.1016/S0896-6273(02)00768-7.
Article
CAS
PubMed
Google Scholar
Mabuchi H, Fujii H, Calin G, Alder H, Negrini M, Rassenti L, Kipps TJ, Bullrich F, Croce CM: Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia. Cancer Res. 2001, 61: 2870-2877.
CAS
PubMed
Google Scholar
Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ: SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002, 16: 919-932. 10.1101/gad.973302.
Article
PubMed Central
CAS
PubMed
Google Scholar
Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I: NoRC – a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 2001, 20: 4892-4900. 10.1093/emboj/20.17.4892.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S, Kawashima S, Nakaya A: The KEGG databases at GenomeNet. Nucleic Acids Res. 2002, 30: 42-46. 10.1093/nar/30.1.42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A: Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992, 69: 905-914.
Article
CAS
PubMed
Google Scholar
Hendrich B, Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998, 18: 6538-6547.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16: 6-21. 10.1101/gad.947102.
Article
CAS
PubMed
Google Scholar
Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A: The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999, 401: 301-304. 10.1038/45843.
Article
CAS
PubMed
Google Scholar
Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Genuardi M, Karbowski M, Yeung AT, Matsumoto Y, Bellacosa A: Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain. J Cell Physiol. 2000, 185: 473-480. 10.1002/1097-4652(200012)185:3<473::AID-JCP19>3.0.CO;2-#.
Article
CAS
PubMed
Google Scholar
Saito M, Ishikawa F: The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J Biol Chem. 2002, 277: 35434-35439. 10.1074/jbc.M203455200.
Article
CAS
PubMed
Google Scholar
Vacca M, Filippini F, Budillon A, Rossi V, Mercadante G, Manzati E, Gualandi F, Bigoni S, Trabanelli C, Pini G: Mutation analysis of the MECP2 gene in British and Italian Rett syndrome females. J Mol Med. 2001, 78: 648-655. 10.1007/s001090000155.
Article
CAS
PubMed
Google Scholar
Santoro R, Li J, Grummt I: The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet. 2002, 32: 393-396. 10.1038/ng1010.
Article
CAS
PubMed
Google Scholar
Schultz DC, Friedman JR, Rauscher FJ: Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev. 2001, 15: 428-443. 10.1101/gad.869501.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doerks T, Copley R, Bork P: DDT – a novel domain in different transcription and chromosome remodeling factors. Trends Biochem Sci. 2001, 26: 145-146. 10.1016/S0968-0004(00)01769-2.
Article
CAS
PubMed
Google Scholar
Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, Krumm A, Taborsky GJ, Chansky HA: An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and mSin3 transcription corepressors mSin3A/B. Biochem J. 2002
Google Scholar
Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y: Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell. 2001, 8: 1207-1217. 10.1016/S1097-2765(01)00405-1.
Article
CAS
PubMed
Google Scholar
Tachibana M, Sugimoto K, Fukushima T, Shinkai Y: Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001, 276: 25309-25317. 10.1074/jbc.M101914200.
Article
CAS
PubMed
Google Scholar
Stec I, Wright TJ, van Ommen GJ, de Boer PA, van Haeringen A, Moorman AF, Altherr MR, den Dunnen JT: WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Genet. 1998, 7: 1071-1082. 10.1093/hmg/7.7.1071.
Article
CAS
PubMed
Google Scholar
Qiu C, Sawada K, Zhang X, Cheng X: The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol. 2002, 9: 217-224.
PubMed Central
CAS
PubMed
Google Scholar
Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2002,
Google Scholar
Hendrich B, Abbott C, McQueen H, Chambers D, Cross S, Bird A: Genomic structure and chromosomal mapping of the murine and human Mbd1, Mbd2, Mbd3, and Mbd4 genes. Mamm Genome. 1999, 10: 906-912. 10.1007/s003359901112.
Article
CAS
PubMed
Google Scholar
Quaderi NA, Meehan RR, Tate PH, Cross SH, Bird AP, Chatterjee A, Herman GE, Brown SD: Genetic and physical mapping of a gene encoding a methyl CpG binding protein, Mecp2, to the mouse X chromosome. Genomics. 1994, 22: 648-651. 10.1006/geno.1994.1442.
Article
CAS
PubMed
Google Scholar
D'Esposito M, Quaderi NA, Ciccodicola A, Bruni P, Esposito T, D'Urso M, Brown SD: Isolation, physical mapping, and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2. Mamm Genome. 1996, 7: 533-535. 10.1007/s003359900157.
Article
PubMed
Google Scholar
Nagase T, Kikuno R, Ohara O: Prediction of the coding sequences of unidentified human genes. XXI. The complete sequences of 60 new cDNA clones from brain which code for large proteins. DNA Res. 2001, 8: 179-187.
Article
CAS
PubMed
Google Scholar
Jones MH, Hamana N, Nezu J, Shimane M: A novel family of bromodomain genes. Genomics. 2000, 63: 40-45. 10.1006/geno.1999.6071.
Article
CAS
PubMed
Google Scholar
Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY: Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002, 11: 115-124. 10.1093/hmg/11.2.115.
Article
CAS
PubMed
Google Scholar
LaSalle JM, Goldstine J, Balmer D, Greco CM: Quantitative localization of heterogeneous methyl-CpG-binding protein 2 (MeCP2) expression phenotypes in normal and Rett syndrome brain by laser scanning cytometry. Hum Mol Genet. 2001, 10: 1729-1740. 10.1093/hmg/10.17.1729.
Article
CAS
PubMed
Google Scholar
Tudor M, Akbarian S, Chen RZ, Jaenisch R: Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci U S A. 2002, 99: 15536-15541. 10.1073/pnas.242566899.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25: 4876-4882. 10.1093/nar/25.24.4876.
Article
PubMed Central
CAS
PubMed
Google Scholar
Coy JF, Sedlacek Z, Bachner D, Delius H, Poustka A: A complex pattern of evolutionary conservation and alternative polyadenylation within the long 3"-untranslated region of the methyl-CpG-binding protein 2 gene (MeCP2) suggests a regulatory role in gene expression. Hum Mol Genet. 1999, 8: 1253-1262. 10.1093/hmg/8.7.1253.
Article
CAS
PubMed
Google Scholar
Nomura N, Nagase T, Miyajima N, Sazuka T, Tanaka A, Sato S, Seki N, Kawarabayasi Y, Ishikawa K, Tabata S: Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). DNA Res. 1994, 1: 251-262.
Article
CAS
PubMed
Google Scholar