Brenner SE: Errors in genome annotation. Trends Genet. 1999, 15: 132-133. 10.1016/S0168-9525(99)01706-0.
Article
CAS
PubMed
Google Scholar
Gerlt JA, Babbitt PC: Can sequence determine function?. Genome Biol. 2000, 1: REVIEWS0005.10-10.1186/gb-2000-1-5-reviews0005.
Article
Google Scholar
Babbitt PC: Definitions of enzyme function for the structural genomics era. Curr Opin Chem Biol. 2003, 2: 230-237. 10.1016/S1367-5931(03)00028-0.
Article
Google Scholar
Labedan B, Boyen A, Baetens M, Charlier D, Chen P, Cunin R, Durbecq V, Glansdorff N, Hervé G, Legrain C, Liang Z, Purcarea C, Roovers M, Sanchez R, Toong TL, Van de Casteele M, van Vliet F, Xu Y, Zhang YF: The evolutionary history of carbamoyltransferases: a complex set of paralogous genes was already present in the last universal common ancestor. J Mol Evol. 1999, 49: 461-473.
Article
CAS
PubMed
Google Scholar
Labedan B, Xu Y, Naumoff DG, Glansdorff N: Using quaternary structures to assess the evolutionary history of proteins : the case of the Aspartate Carbamoyltransferase. Mol Biol Evol. 2004, 21: 364-73. 10.1093/molbev/msh024.
Article
CAS
PubMed
Google Scholar
The SwissProt page for the YgeW protein: [http://www.expasy.org/cgi-bin/niceprot.pl?%20Q46803]
Dashuang S, Gallegos R, De Ponte IIIJ, Morizono H, Yu X, Allewell NM, Malamy M, Tuchman M: Crystal structure of a transcarbamylase-like protein from the anaerobic bacterium Bacteroides fragilis at 2.0 A resolution. J Mol Biol. 2002, 320: 899-908. 10.1016/S0022-2836(02)00539-9.
Article
Google Scholar
Roon RJ, Barker HA: Fermentation of agmatine in Streptococcus faecalis : occurrence of putrescine transcarbamoylase. J Bacteriol. 1972, 109: 44-50.
PubMed Central
CAS
PubMed
Google Scholar
Wargnies B, Lauwers N, Stalon V: Structure and properties of the putrescine carbamoyltransferase of Streptococcus faecalis . Eur J Biochem. 1979, 101: 143-52.
Article
CAS
PubMed
Google Scholar
Simon JP, Stalon V: Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis . J Bacteriol. 1982, 152: 676-81.
PubMed Central
CAS
PubMed
Google Scholar
Stalon V: Putrescine carbamoyltransferase (Streptococcus faecalis). Methods Enzymol. 1983, 94: 339-43. 10.1016/S0076-6879(83)94061-2.
Article
CAS
PubMed
Google Scholar
Vander Wauven C, Simon JP, Slos P, Stalon V: Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Arch Microbiol. 1986, 145: 386-90.
Article
CAS
PubMed
Google Scholar
Tricot C, De Coen JL, Momin P, Falmagne P, Stalon V: Evolutionary relationships among bacterial carbamoyltransferases. J Gen Microbiol. 1989, 135: 2453-64.
CAS
PubMed
Google Scholar
Paulsen I, Banerjei L, Myers GSA, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM: Role of Mobile DNA in the Evolution of Vancomycin-Resistant Enterococcus faecalis . Science. 2003, 299: 2071-2074. 10.1126/science.1080613.
Article
CAS
PubMed
Google Scholar
Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS: UniProt: the Universal Protein Knowledgebase. Nucleic Acids Res. 2004, 32: D115-D119. 10.1093/nar/gkh131. [http://www.expasy.uniprot.org/index.shtml]
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakada Y, Jiang Y, Nishijyo T, Itoh Y, Lu CD: Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol. 2001, 183: 6517-24. 10.1128/JB.183.22.6517-6524.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakada Y, Itoh Y: Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase, N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology. 2003, 149: 707-14. 10.1099/mic.0.26009-0.
Article
CAS
PubMed
Google Scholar
Janowitz T, Kneifel H, Piotrowski M: Identification and characterization of plant agmatine iminohydrolase, the last missing link in polyamine biosynthesis of plants. FEBS Lett. 2003, 544: 258-61. 10.1016/S0014-5793(03)00515-5.
Article
CAS
PubMed
Google Scholar
Cunin R, Glansdorff N, Piérard A, Stalon V: Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986, 50: 314-352.
PubMed Central
CAS
PubMed
Google Scholar
Sekowska A, Danchin A, Risler JL: Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology. 2000, 146: 1815-28.
Article
CAS
PubMed
Google Scholar
Barcelona-Andres B, Marina A, Rubio V: Gene structure, organization, expression and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis . J Bacteriol. 2002, 184: 6289-300. 10.1128/JB.184.22.6289-6300.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zuniga M, Perez G, Gonzalez-Candelas F: Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol. 2002, 25: 429-44. 10.1016/S1055-7903(02)00277-4.
Article
CAS
PubMed
Google Scholar
Bairoch A: The ENZYME database in 2000. Nucleic Acids Res. 2000, 28: 304-305. 10.1093/nar/28.1.304. [http://www.expasy.org/enzyme/]
Article
PubMed Central
CAS
PubMed
Google Scholar
Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D: BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 2004, 32: D431-D433. 10.1093/nar/gkh081. [http://www.brenda.uni-koeln.de/]
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resources for deciphering the genome. Nucleic Acids Res. 2004, 32: D277-D280. 10.1093/nar/gkh063. [http://www.genome.ad.jp/kegg]
Article
PubMed Central
CAS
PubMed
Google Scholar
Karp PD, Arnaud M, Collado-Vides J, Ingraham J, Paulsen IT, Saier MH: The E. coli EcoCyc Database: No Longer Just a Metabolic Pathway Database. ASM News. 2004, 70: 25-30. [http://www.biocyc.org/]
Google Scholar
The Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32: D258-D261. 10.1093/nar/gkh036. [http://www.geneontology.org/]
Article
Google Scholar
Grivell L: Mining the bibliome: searching for a needle in a haystack?. EMBO Reports. 2002, 3: 200-203. 10.1093/embo-reports/kvf059.
Article
PubMed Central
CAS
PubMed
Google Scholar
Joint Genome Institute (Department of Energy, USA): [http://www.jgi.doe.gov/JGI_microbial/html/index.html]
Sanger Institute (Wellcome Trust, United Kingdom): [http://www.sanger.ac.uk/Projects]
Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999, 41: 95-98. [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]
CAS
Google Scholar
Felsenstein J: Inferring phylogenies from protein sequences by parsimony, distance and likelihood methods. Methods Enzymol. 1996, 266: 418-27. 10.1016/S0076-6879(96)66026-1. [http://evolution.gs.washington.edu/phylip.html]
Article
CAS
PubMed
Google Scholar
Gonnet GH, Hallett MT, Korostensky C, Bernardin L: Darwin v. 2.0: an interpreted computer language for the biosciences. Bioinformatics. 2000, 16: 101-103. 10.1093/bioinformatics/16.2.101. [http://cbrg.inf.ethz.ch/welcome.html]
Article
CAS
PubMed
Google Scholar