Hori T, Ridge RW, Tulecke W, Del Tredici P, Tremouillaux-Guiller J, Tobe H: Ginkgo biloba-A Global Treasure. 1997, Tokyo, Springer
Chapter
Google Scholar
Curtis-Prior P, Vere D, Fray P: Therapeutic value of Ginkgo biloba in reducing symptoms of decline in mental function. J Pharm Pharmacol. 1999, 51: 535-541. 10.1211/0022357991772817.
Article
PubMed
CAS
Google Scholar
Gold PE, Cahill L, Wenk GL: The lowdown on Ginkgo biloba. Sci Am. 2003, 288: 86-91.
Article
PubMed
Google Scholar
Rothwell GW, Holt B: Fossils and phenology in the evolution of Ginkgo biloba. Ginkgo-biloba-A Global Treasure. Edited by: Hori T, Ridge RW, Tulecke W, Del Tredici P, Trémouillaux-Guiller J and Tobe H. 1997, Tokyo, Springer-Verlag, 223-230.
Chapter
Google Scholar
Zhou Z, Zheng S: The missing link in Ginkgo evolution. Nature. 2003, 423: 821-822. 10.1038/423821a.
Article
PubMed
CAS
Google Scholar
Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H: AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA. 2000, 97: 11650-11654. 10.1073/pnas.200217597.
Article
PubMed
CAS
PubMed Central
Google Scholar
Doyle JA, Donoghue MJ: Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Reviews. 1986, 52: 321-431.
Article
Google Scholar
Donoghue MJ, Doyle JA: Seed plant phylogeny: Demise of the anthophyte hypothesis?. Curr Biol. 2000, 10: R106-9. 10.1016/S0960-9822(00)00304-3.
Article
PubMed
CAS
Google Scholar
Magollón S, Sanderson MJ: Relationships among seed plants inferred from highly conserved genes: sorting confilicting phylogenetic signals among ancient lineages. Am J Bot. 2002, 89: 1991-2006.
Article
Google Scholar
Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD: Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA. 2000, 97: 4086-4091. 10.1073/pnas.97.8.4086.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bowe LM, Coat G, dePamphilis CW: Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc Natl Acad Sci USA. 2000, 97: 4092-4097. 10.1073/pnas.97.8.4092.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hasebe M: Molecular phylogeny of Ginkgo biloba: close relationship between Ginkgo biloba and cycads. Ginkgo biloba-a Global Treasure. Edited by: Hori T, Ridge RW, Tulecke W, Del Tredici P, Trémouillaux-Guiller J and Tobe H. 1997, Tokyo, Springer-Verlag, 173-181.
Chapter
Google Scholar
Chamberlain CJ: Gymnosperms. Structure and Evolution. 1935, Chicago, University of Chicaco Press
Google Scholar
Friedman WE: Morphogenesis and experimental aspects of growth and development of the male gametophyte of Ginkgo biloba in vitro. American Journal of Botany. 1987, 74: 1816-1830.
Article
Google Scholar
Ikeno S, Hirase S: Spermatozoids in gymnosperms. Ann of Bot. 1897, 11: 344-345.
Google Scholar
Foster AS, Gifford EM: Comparative Morphology of Vascular Plants. Edited by: Kennedy D and Park RB. 1974, San Francisco, W. H. Freeman and Company, second edition
Google Scholar
Zhang P, Tan HT, Pwee KH, Kumar PP: Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J. 2004, 37: 566-577. 10.1046/j.1365-313X.2003.01983.x.
Article
PubMed
CAS
Google Scholar
Brenner ED, Stevenson DW, McCombie RW, Katari MS, Rudd SA, Mayer KF, Palenchar PM, Runko SJ, Twigg RW, Dai G, Martienssen RA, Benfey PN, Coruzzi GM: Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol. 2003, 4: R78-10.1186/gb-2003-4-12-r78.
Article
PubMed
PubMed Central
Google Scholar
Jager M, Hassanin A, Manuel M, Guyader HL, Deutsch J: MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS Family. Mol Biol Evol. 2003, 20: 842-854. 10.1093/molbev/msg089.
Article
PubMed
CAS
Google Scholar
Chinn E, Silverthorne J: Light-dependent chloroplast development and expression of a light-harvesting chlorophyll a/b-binding protein gene in the gymnosperm Ginkgo biloba. Plant Physiol. 1993, 103: 727-732. 10.1104/pp.103.3.727.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chinn E, Silverthorne J, Hohtola A: Light-regulated and organ-specific expression of types 1, 2, and 3 light-harvesting complex b mRNAs in Ginkgo biloba. Plant Physiol. 1995, 107: 593-602. 10.1104/pp.107.2.593.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bierhorst DW: Morphology of Vascular Plants. 1971, , Macmillan
Google Scholar
The New York Plant Genomics Consortium. [http://nypgenomics.org]
OpenSputnik Comparative Genomics Platform. [http://sputnik.btk.fi/]
The Institute for Genomic Research. [http://www.tigr.org/]
Plant Genomic Database. [http://www.plantgdb.org/]
Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G: A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature. 1997, 386: 44-51. 10.1038/386044a0.
Article
PubMed
CAS
Google Scholar
Kohler C, Grossniklaus U: Epigenetic inheritance of expression states in plant development: the role of Polycomb group proteins. Curr Opin Cell Biol. 2002, 14: 773-779. 10.1016/S0955-0674(02)00394-0.
Article
PubMed
CAS
Google Scholar
Shuai B, Reynaga-Pena CG, Springer PS: The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol. 2002, 129: 747-761. 10.1104/pp.010926.
Article
PubMed
CAS
PubMed Central
Google Scholar
Noh YS, Bizzell CM, Noh B, Schomburg FM, Amasino RM: EARLY FLOWERING 5 acts as a floral repressor in Arabidopsis. Plant J. 2004, 38: 664-672. 10.1111/j.1365-313X.2004.02072.x.
Article
PubMed
CAS
Google Scholar
Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J: Activation tagging in Arabidopsis. Plant Physiol. 2000, 122: 1003-1013. 10.1104/pp.122.4.1003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hayama R, Coupland G: The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol. 2004, 135: 677-684. 10.1104/pp.104.042614.
Article
PubMed
CAS
PubMed Central
Google Scholar
Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW: The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 2003, 17: 2642-2647. 10.1101/gad.1122903.
Article
PubMed
CAS
PubMed Central
Google Scholar
Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH: LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature. 2003, 423: 995-999. 10.1038/nature01696.
Article
PubMed
CAS
Google Scholar
Chamovitz DA, Glickman M: The COP9 signalosome. Curr Biol. 2002, 12: R232-10.1016/S0960-9822(02)00775-3.
Article
PubMed
CAS
Google Scholar
Hellmann H, Estelle M: Plant development: regulation by protein degradation. Science. 2002, 297: 793-797. 10.1126/science.1072831.
Article
PubMed
CAS
Google Scholar
Rudd S: Expressed sequence tags: alternative or complement to whole genome sequences?. Trends Plant Sci. 2003, 8: 321-329. 10.1016/S1360-1385(03)00131-6.
Article
PubMed
CAS
Google Scholar
Kirst M, Johnson AF, Baucom C, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R: Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2003, 100: 7383-7388. 10.1073/pnas.1132171100.
Article
PubMed
PubMed Central
Google Scholar
Katz A, Oliva M, Mosquna A, Hakim O, Ohad N: FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 2004, 37: 707-719. 10.1111/j.1365-313X.2003.01996.x.
Article
PubMed
CAS
Google Scholar
Bowman JL, Smyth DR, Meyerowitz EM: Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991, 112: 1-20.
PubMed
CAS
Google Scholar
Brenner ED, Stevenson DW: Genomic Approaches to Understand the Origins of Seeds. Landscapes, Genomics and Transgenic Conifers. Edited by: Williams CG. 2005, Amsterdam, Publisher: Kluwer-Springer
Google Scholar
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H: A short history of MADS-box genes in plants. Plant Mol Biol. 2000, 42: 115-149. 10.1023/A:1006332105728.
Article
PubMed
CAS
Google Scholar
Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D: Activation tagging of the floral inducer FT. Science. 1999, 286: 1962-1965. 10.1126/science.286.5446.1962.
Article
PubMed
CAS
Google Scholar
Lagercrantz U, Axelsson T: Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol. 2000, 17: 1499-1507.
Article
PubMed
CAS
Google Scholar
Lin WC, Shuai B, Springer PS: The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell. 2003, 15: 2241-2252. 10.1105/tpc.014969.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suzuki G, Yanagawa Y, Kwok SF, Matsui M, Deng XW: Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev. 2002, 16: 554-559. 10.1101/gad.964602.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bogdanovic M: Chlorophyll formation in the dark. Physiol Plant. 1973, 29: 17-18.
Article
CAS
Google Scholar
Peer W, Silverthorne J, Peters JL: Developmental and light-regulated expression of individual members of the light-harvesting complex b gene family in Pinus palustris. Plant Physiol. 1996, 111: 627-634. 10.1104/pp.111.2.627.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brenner ED, Stevenson DW, Twigg RW: Cycads: evolutionary innovations and the role of plant-derived neurotoxins. Trends Plant Sci. 2003, 8: 446-452. 10.1016/S1360-1385(03)00190-0.
Article
PubMed
CAS
Google Scholar
Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998, 8: 186-194.
Article
PubMed
CAS
Google Scholar
Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998, 8: 175-185.
Article
PubMed
CAS
Google Scholar
Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome Res. 1999, 9: 868-877. 10.1101/gr.9.9.868.
Article
PubMed
CAS
PubMed Central
Google Scholar
Iseli C, Jongeneel CV, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol. 1999, 138-148.
Google Scholar
Rudd S: openSputnik--a database to ESTablish comparative plant genomics using unsaturated sequence collections. Nucleic Acids Res. 2005, 33 (Database Issue): D622-7.
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. 10.1006/jmbi.1990.9999.
Article
PubMed
CAS
Google Scholar