Doolittle WF: You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998, 14 (8): 307-311. 10.1016/S0168-9525(98)01494-2.
Article
PubMed
Google Scholar
Martin W, Herrmann RG: Gene transfer from organelles to the nucleus: how much, what happens, and Why?. Plant Physiol. 1998, 118 (1): 9-17. 10.1104/pp.118.1.9.
Article
PubMed
PubMed Central
Google Scholar
Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM: Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature. 1999, 399 (6734): 323-10.1038/20601.
Article
PubMed
Google Scholar
Worning P, Jensen LJ, Nelson KE, Brunak S, Ussery DW: Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima. Nucleic Acids Res. 2000, 28 (3): 706-709. 10.1093/nar/28.3.706.
Article
PubMed
PubMed Central
Google Scholar
Da Lage JL, Feller G, Janecek S: Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the alpha-amylase model. Cell Mol Life Sci. 2004, 61 (1): 97-109. 10.1007/s00018-003-3334-y.
Article
PubMed
Google Scholar
Garcia-Vallve S, Romeu A, Palau J: Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol. 2000, 17 (3): 352-361.
Article
PubMed
Google Scholar
Devillard E, Newbold CJ, Scott KP, Forano E, Wallace RJ, Jouany JP, Flint HJ: A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence similarity to family 11 xylanases from gram-positive bacteria. FEMS Microbiol Lett. 1999, 181 (1): 145-152.
Article
PubMed
Google Scholar
Scholl EH, Thorne JL, McCarter JP, Bird DM: Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach. Genome Biol. 2003, 4 (6): R39-10.1186/gb-2003-4-6-r39.
Article
PubMed
PubMed Central
Google Scholar
Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillen N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WAJ, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N: The genome of the protist parasite Entamoeba histolytica. Nature. 2005, 433 (7028): 865-868. 10.1038/nature03291.
Article
PubMed
Google Scholar
Morrison M: Do ruminal bacteria exchange genetic material?. J Dairy Sci. 1996, 79 (8): 1476-1486.
Article
PubMed
Google Scholar
Mercer DK, Melville CM, Scott KP, Flint HJ: Natural genetic transformation in the rumen bacterium Streptococcus bovis JB1. FEMS Microbiol Lett. 1999, 179 (2): 485-490.
Article
PubMed
Google Scholar
Zagulski M, Nowak JK, Le Mouel A, Nowacki M, Migdalski A, Gromadka R, Noel B, Blanc I, Dessen P, Wincker P, Keller AM, Cohen J, Meyer E, Sperling L: High coding density on the largest Paramecium tetraurelia somatic chromosome. Curr Biol. 2004, 14 (15): 1397-1404. 10.1016/j.cub.2004.07.029.
Article
PubMed
Google Scholar
Williams AG, Coleman GS: The rumen Protozoa. Brock/Springer Series in Contemporary Bioscience. Edited by: Brock TD, Wisconsin-Madison U. 1992, Springer-Verlag New York Inc, 192-210.
Google Scholar
Wereszka K, McIntosh FM, Michalowski T, Jouany JP, Nsabimana E, Macheboeuf D, McEwan NR, Newbold CJ: A cellulase produced by the rumen anaerobic protozoan epidinium ecaudatum has an unusual pH optimum. Endocytobiosis and Cell Research. 2004, 15: 561-569.
Google Scholar
Newbold CJ, McEwan NR, Calza RE, Chareyron EN, Duval SM, Eschenlauer SC, McIntosh FM, Nelson N, Travis AJ, Wallace RJ: An NAD(+)-dependent glutamate dehydrogenase cloned from the ruminal ciliate protozoan, Entodinium caudatum. FEMS Microbiol Lett. 2005, 247 (2): 113-121. 10.1016/j.femsle.2005.04.034.
Article
PubMed
Google Scholar
Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF: A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 2000, 290 (5493): 972-977. 10.1126/science.290.5493.972.
Article
PubMed
Google Scholar
Sankar M, Delgado O, Mattiasson B: Isolation and characterization of solventogenic, cellulase-free xylanolytic Clostridia from cow rumen. Water Sci Technol. 2003, 48 (4): 185-188.
PubMed
Google Scholar
Russell JB, Rychlik JL: Factors that alter rumen microbial ecology. Science. 2001, 292 (5519): 1119-1122. 10.1126/science.1058830.
Article
PubMed
Google Scholar
Edwards JE, McEwan NR, Travis AJ, Wallace JR: 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie van Leeuwenhoek. 2004, 86 (3): 263-10.1023/B:ANTO.0000047942.69033.24.
Article
Google Scholar
Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R: Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol. 2003, 5 (11): 1212-1220. 10.1046/j.1462-2920.2003.00526.x.
Article
PubMed
Google Scholar
Koski LB, Golding GB: The closest BLAST hit is often not the nearest neighbor. J Mol Evol. 2001, 52 (6): 540-542.
Article
PubMed
Google Scholar
Doi RH, Kosugi A: Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol. 2004, 2 (7): 541-551. 10.1038/nrmicro925.
Article
PubMed
Google Scholar
Jouany JP, Senaud J: [Effect of rumen ciliates on the digestion of different carbohydrates in sheep. I.--Utilization of cell wall carbohydrates (cellulose and hemicellulose) and of starch]. Reprod Nutr Dev. 1982, 22 (5): 735-752.
Article
PubMed
Google Scholar
Abou Akkada AR, Howard BH: The biochemistry of rumen protozoa: 3 - The carbohydrate metabolism of Entodinium. Biochem J. 1960, 76: 445-451.
Article
Google Scholar
Ushida K, Jouany JP: Fiber digesting capacities of five genera of rumen ciliates. Proc Soc Nutr Physiol. 1994, 3: 168-
Google Scholar
Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH: An anaerobic mitochondrion that produces hydrogen. Nature. 2005, 434 (7029): 74-79. 10.1038/nature03343.
Article
PubMed
Google Scholar
Lloyd D, Ralphs JR, Harris JC: Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology. 2002, 148 (Pt 3): 727-733.
Article
PubMed
Google Scholar
Nixon JE, Field J, McArthur AG, Sogin ML, Yarlett N, Loftus BJ, Samuelson J: Iron-dependent hydrogenases of Entamoeba histolytica and Giardia lamblia: activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer. Biol Bull. 2003, 204 (1): 1-9.
Article
PubMed
Google Scholar
Dolezal P, Vanacova S, Tachezy J, Hrdy I: Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. Gene. 2004, 329: 81-92. 10.1016/j.gene.2003.12.022.
Article
PubMed
Google Scholar
Yarlett N, Coleman GS, Williams AG, Lloyd D: Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett. 1984, 21: 15-19. 10.1016/0378-1097(84)90171-X.
Article
Google Scholar
Bapteste E, Moreira D, Philippe H: Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. Gene. 2003, 318: 185-191. 10.1016/S0378-1119(03)00797-2.
Article
PubMed
Google Scholar
Mertens E: Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme?. FEBS Lett. 1991, 285 (1): 1-5. 10.1016/0014-5793(91)80711-B.
Article
PubMed
Google Scholar
Siebers B, Klenk HP, Hensel R: PPi-dependent phosphofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution. J Bacteriol. 1998, 180 (8): 2137-2143.
PubMed
PubMed Central
Google Scholar
Wallace RJ, Onodera R, Cotta MA: Metabolism of nitrogen-containing compounds. The Rumen Microbial Ecosystem. Edited by: Hobson PNSCS. 1997, London , Chapman and Hall, 283-328.
Chapter
Google Scholar
Koonin EV, Makarova KS, Aravind L: Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol. 2001, 55: 709-742. 10.1146/annurev.micro.55.1.709.
Article
PubMed
Google Scholar
Syvanen M: Horizontal gene transfer: evidence and possible consequences. Annu Rev Genet. 1994, 28: 237-261.
Article
PubMed
Google Scholar
Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature. 2000, 405 (6784): 299-304. 10.1038/35012500.
Article
PubMed
Google Scholar
Skovorodkin IN, Zassoukhina IB, Hojak S, Ammermann D, Gunzl A: Minichromosomal DNA replication in the macronucleus of the hypotrichous ciliate Stylonychia lemnae is independent of chromosome-internal sequences. Chromosoma. 2001, 110 (5): 352-359.
Article
PubMed
Google Scholar
Prescott DM: Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat Rev Genet. 2000, 1 (3): 191-198. 10.1038/35042057.
Article
PubMed
Google Scholar
Lawrence JG, Ochman H: Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol. 1997, 44 (4): 383-397. 10.1007/PL00006158.
Article
PubMed
Google Scholar
Koski LB, Morton RA, Golding GB: Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol. 2001, 18 (3): 404-412.
Article
PubMed
Google Scholar
Millward-Sadler SJ, Hall J, Black GW, Hazlewood GP, Gilbert HJ: Evidence that the Piromyces gene family encoding endo-1,4-mannanases arose through gene duplication. FEMS Microbiol Lett. 1996, 141 (2-3): 183-188.
Article
PubMed
Google Scholar
Yan Y, Smant G, Stokkermans J, Qin L, Helder J, Baum T, Schots A, Davis E: Genomic organization of four [beta]-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene. 1998, 220 (1-2): 61-70. 10.1016/S0378-1119(98)00413-2.
Article
PubMed
Google Scholar
Dutilh BE, Huynen MA, Bruno WJ, Snel B: The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J Mol Evol. 2004, 58 (5): 527-539. 10.1007/s00239-003-2575-6.
Article
PubMed
Google Scholar
Eschenlauer SCP, McEwan NR, Calza RE, Wallace RJ, Onodera R, Newbold CJ: Phylogenetic position and codon usage of two centrin genes from the rumen ciliate protozoan, Entodinium caudatum. FEMS Microbiology Letters. 1998, 166 (1): 147-
Article
PubMed
Google Scholar
VecScreen. [http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html]
Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000, 7 (1-2): 203-214. 10.1089/10665270050081478.
Article
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR: The Pfam protein families database. Nucleic Acids Res. 2004, 32 Database issue: D138-41. 10.1093/nar/gkh121.
Article
Google Scholar
Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH: CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 2005, 33 (Database issue): D192-196. 10.1093/nar/gki069.
Article
PubMed
PubMed Central
Google Scholar
Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P: SMART 4.0: towards genomic data integration. Nucl Acids Res. 2004, 32 (90001): D142-144. 10.1093/nar/gkh088.
Article
PubMed
PubMed Central
Google Scholar
Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science. 1997, 278 (5338): 631-637. 10.1126/science.278.5338.631.
Article
PubMed
Google Scholar
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV: The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001, 29 (1): 22-28. 10.1093/nar/29.1.22.
Article
PubMed
PubMed Central
Google Scholar
Coutinho PM, Henrissat B: The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. Genetics, Biochemistry and Ecology of Cellulose Degradation. 1999
Google Scholar
Ogata H, Goto S, Fujibuchi W, Kanehisa M: Computation with the KEGG pathway database. Biosystems. 1998, 47 (1-2): 119-128. 10.1016/S0303-2647(98)00017-3.
Article
PubMed
Google Scholar
Smith TF, Waterman MS: Identification of common molecular subsequences. J Mol Biol. 1981, 147 (1): 195-197. 10.1016/0022-2836(81)90087-5.
Article
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680.
Article
PubMed
PubMed Central
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32 (5): 1792-1797. 10.1093/nar/gkh340.
Article
PubMed
PubMed Central
Google Scholar
Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001, 17 (8): 754-755. 10.1093/bioinformatics/17.8.754.
Article
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19 (12): 1572-1574. 10.1093/bioinformatics/btg180.
Article
PubMed
Google Scholar