Jurica MS, Moore MJ: Pre-mRNA splicing: awash in a sea of proteins. Mol Cell. 2003, 12 (1): 5-14. 10.1016/S1097-2765(03)00270-3.
Article
PubMed
CAS
Google Scholar
Collins L, Penny D: Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol. 2005, 22 (4): 1053-1066. 10.1093/molbev/msi091.
Article
PubMed
CAS
Google Scholar
Tazi J, Durand S, Jeanteur P: The spliceosome: a novel multi-faceted target for therapy. Trends Biochem Sci. 2005, 30 (8): 469-478. 10.1016/j.tibs.2005.06.002.
Article
PubMed
CAS
Google Scholar
Collins L, Penny D: Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Investigating the intron recognition mechanism in eukaryotes. Mol Biol Evol. 2006, 23 (5): 901-910. 10.1093/molbev/msj084.
Article
PubMed
CAS
Google Scholar
Burge CB, Tuschl T, Sharp PA: Splicing signals. The RNA World II. Edited by: Gesteland RF, Cech TR, Atkins JF. 1999, Cold Spring Harbor, New York , Cold Spring Harbor Laboratory Press, 525-60.
Google Scholar
Rosbash M, Seraphin B: Who's on first? The U1 snRNP-5' splice site interaction and splicing. Trends Biochem Sci. 1991, 16 (5): 187-190. 10.1016/0968-0004(91)90073-5.
Article
PubMed
CAS
Google Scholar
Du H, Rosbash M: The U1 snRNP protein U1C recognizes the 5' splice site in the absence of base pairing. Nature. 2002, 419 (6902): 86-90. 10.1038/nature00947.
Article
PubMed
CAS
Google Scholar
Carmel I, Tal S, Vig I, Ast G: Comparative analysis detects dependencies among the 5' splice-site positions. RNA. 2004, 10 (5): 828-840. 10.1261/rna.5196404.
Article
PubMed
CAS
PubMed Central
Google Scholar
Reed R: Mechanisms of fidelity in pre-mRNA splicing. Curr Opin Cell Biol. 2000, 12 (3): 340-345. 10.1016/S0955-0674(00)00097-1.
Article
PubMed
CAS
Google Scholar
Smith CW, Porro EB, Patton JG, Nadal-Ginard B: Scanning from an independently specified branch point defines the 3' splice site of mammalian introns. Nature. 1989, 342 (6247): 243-247. 10.1038/342243a0.
Article
PubMed
CAS
Google Scholar
Lim LP, Burge CB: A computational analysis of sequence features involved in recognition of short introns. Proc Natl Acad Sci U S A. 2001, 98 (20): 11193-11198. 10.1073/pnas.201407298.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu HX, Zhang M, Krainer AR: Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 1998, 12 (13): 1998-2012.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schaal TD, Maniatis T: Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol. 1999, 19 (1): 261-273.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schaal TD, Maniatis T: Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences. Mol Cell Biol. 1999, 19 (3): 1705-1719.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cartegni L, Chew SL, Krainer AR: Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002, 3 (4): 285-298. 10.1038/nrg775.
Article
PubMed
CAS
Google Scholar
Graveley BR: Sorting out the complexity of SR protein functions. RNA. 2000, 6 (9): 1197-1211. 10.1017/S1355838200000960.
Article
PubMed
CAS
PubMed Central
Google Scholar
Blencowe BJ: Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci. 2000, 25 (3): 106-110. 10.1016/S0968-0004(00)01549-8.
Article
PubMed
CAS
Google Scholar
Coulter LR, Landree MA, Cooper TA: Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol. 1997, 17 (4): 2143-2150.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu HX, Chew SL, Cartegni L, Zhang MQ, Krainer AR: Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol. 2000, 20 (3): 1063-1071. 10.1128/MCB.20.3.1063-1071.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR: ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003, 31 (13): 3568-3571. 10.1093/nar/gkg616.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fairbrother WG, Yeh RF, Sharp PA, Burge CB: Predictive identification of exonic splicing enhancers in human genes. Science. 2002, 297 (5583): 1007-1013. 10.1126/science.1073774.
Article
PubMed
CAS
Google Scholar
Fairbrother WG, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp PA, Burge CB: RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res. 2004, 32 (Web Server issue): W187-90.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang XH, Chasin LA: Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev. 2004, 18 (11): 1241-1250. 10.1101/gad.1195304.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang XH, Kangsamaksin T, Chao MS, Banerjee JK, Chasin LA: Exon inclusion is dependent on predictable exonic splicing enhancers. Mol Cell Biol. 2005, 25 (16): 7323-7332. 10.1128/MCB.25.16.7323-7332.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang XH, Leslie CS, Chasin LA: Computational searches for splicing signals. Methods. 2005, 37 (4): 292-305. 10.1016/j.ymeth.2005.07.011.
Article
PubMed
CAS
Google Scholar
Fairbrother WG, Holste D, Burge CB, Sharp PA: Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol. 2004, 2 (9): E268-10.1371/journal.pbio.0020268.
Article
PubMed
PubMed Central
Google Scholar
Fields C: Information content of Caenorhabditis elegans splice site sequences varies with intron length. Nucleic Acids Res. 1990, 18 (6): 1509-1512.
Article
PubMed
CAS
PubMed Central
Google Scholar
Weir M, Rice M: Ordered partitioning reveals extended splice-site consensus information. Genome Res. 2004, 14 (1): 67-78. 10.1101/gr.1715204.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kupfer DM, Drabenstot SD, Buchanan KL, Lai H, Zhu H, Dyer DW, Roe BA, Murphy JW: Introns and splicing elements of five diverse fungi. Eukaryot Cell. 2004, 3 (5): 1088-1100. 10.1128/EC.3.5.1088-1100.2004.
Article
PubMed
PubMed Central
Google Scholar
Majewski J, Ott J: Distribution and characterization of regulatory elements in the human genome. Genome Res. 2002, 12 (12): 1827-1836. 10.1101/gr.606402.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wu Y, Zhang Y, Zhang J: Distribution of exonic splicing enhancer elements in human genes. Genomics. 2005, 86 (3): 329-336. 10.1016/j.ygeno.2005.05.011.
Article
PubMed
CAS
Google Scholar
Parmley JL, Chamary JV, Hurst LD: Evidence for purifying selection against synonymous mutations in Mammalian exonic splicing enhancers. Mol Biol Evol. 2006, 23 (2): 301-309. 10.1093/molbev/msj035.
Article
PubMed
CAS
Google Scholar
Berget SM: Exon recognition in vertebrate splicing. J Biol Chem. 1995, 270 (6): 2411-2414.
Article
PubMed
CAS
Google Scholar
Fox-Walsh KL, Dou Y, Lam BJ, Hung SP, Baldi PF, Hertel KJ: The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc Natl Acad Sci U S A. 2005, 102 (45): 16176-16181. 10.1073/pnas.0508489102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Haddrill PR, Charlesworth B, Halligan DL, Andolfatto P: Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol. 2005, 6 (8): R67-10.1186/gb-2005-6-8-r67.
Article
PubMed
PubMed Central
Google Scholar
Sironi M, Menozzi G, Comi GP, Cagliani R, Bresolin N, Pozzoli U: Analysis of intronic conserved elements indicates that functional complexity might represent a major source of negative selection on non-coding sequences. Hum Mol Genet. 2005, 14 (17): 2533-2546. 10.1093/hmg/ddi257.
Article
PubMed
CAS
Google Scholar
Stamm S, Riethoven JJ, Le Texier V, Gopalakrishnan C, Kumanduri V, Tang Y, Barbosa-Morais NL, Thanaraj TA: ASD: a bioinformatics resource on alternative splicing. Nucleic Acids Res. 2006, 34 (Database issue): D46-55. 10.1093/nar/gkj031.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sverdlov AV, Rogozin IB, Babenko VN, Koonin EV: Evidence of splice signal migration from exon to intron during intron evolution. Curr Biol. 2003, 13: 2170-2174. 10.1016/j.cub.2003.12.003.
Article
PubMed
CAS
Google Scholar
RESCUE-ESE Web Server. [http://genes.mit.edu/burgelab/rescue-ese/]
Pruitt KD, Tatusova T, Maglott DR: NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005, 33 (Database issue): D501-4. 10.1093/nar/gki025.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, Diekhans M, Furey TS, Harte RA, Hsu F, Hillman-Jackson J, Kuhn RM, Pedersen JS, Pohl A, Raney BJ, Rosenbloom KR, Siepel A, Smith KE, Sugnet CW, Sultan-Qurraie A, Thomas DJ, Trumbower H, Weber RJ, Weirauch M, Zweig AS, Haussler D, Kent WJ: The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006, 34 (Database issue): D590-8. 10.1093/nar/gkj144.
Article
PubMed
CAS
PubMed Central
Google Scholar
Berkeley Comparative Genomics. [http://hanuman.math.berkeley.edu/genomes/euteleostomi.html]
Dewey C: Whole-genome alignments and polytopes for comparative genomics. PhD Thesis. 2006, Department of Electrical Engineering and Computer Sciences, University of California-Berkeley, Berkeley, CA
Google Scholar
Bray N, Pachter L: MAVID: constrained ancestral alignment of multiple sequences. Genome Res. 2004, 14 (4): 693-699. 10.1101/gr.1960404.
Article
PubMed
CAS
PubMed Central
Google Scholar
R package. [http://www.R-project.org]