Nilsson J, Nissen P: Elongation factors on the ribosome. Curr Opin Struct Biol. 2005, 15 (3): 349-354. 10.1016/j.sbi.2005.05.004.
CAS
PubMed
Google Scholar
Ramakrishnan V: Ribosome structure and the mechanism of translation. Cell. 2002, 108 (4): 557-572. 10.1016/S0092-8674(02)00619-0.
CAS
PubMed
Google Scholar
Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J: The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell. 2005, 121 (5): 703-712. 10.1016/j.cell.2005.03.023.
CAS
PubMed
Google Scholar
Sergiev PV, Bogdanov AA, Dontsova OA: How can elongation factors EF-G and EF-Tu discriminate the functional state of the ribosome using the same binding site?. FEBS Lett. 2005, 579 (25): 5439-5442.
CAS
PubMed
Google Scholar
Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS: Ribosomal localization of translation initiation factor IF2. Rna. 2003, 9 (8): 958-969. 10.1261/rna.2116303.
CAS
PubMed Central
PubMed
Google Scholar
Cameron DM, Thompson J, March PE, Dahlberg AE: Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. J Mol Biol. 2002, 319 (1): 27-35. 10.1016/S0022-2836(02)00235-8.
CAS
PubMed
Google Scholar
Cousineau B, Leclerc F, Cedergren R: On the origin of protein synthesis factors: a gene duplication/fusion model. J Mol Evol. 1997, 45 (6): 661-670. 10.1007/PL00006270.
CAS
PubMed
Google Scholar
Sikora AE, Zielke R, Datta K, Maddock JR: The Vibrio harveyi GTPase CgtAV is essential and is associated with the 50S ribosomal subunit. J Bacteriol. 2006, 188 (3): 1205-1210. 10.1128/JB.188.3.1205-1210.2006.
CAS
PubMed Central
PubMed
Google Scholar
Himeno H, Hanawa-Suetsugu K, Kimura T, Takagi K, Sugiyama W, Shirata S, Mikami T, Odagiri F, Osanai Y, Watanabe D, Goto S, Kalachnyuk L, Ushida C, Muto A: A novel GTPase activated by the small subunit of ribosome. Nucleic Acids Res. 2004, 32 (17): 5303-5309. 10.1093/nar/gkh861.
CAS
PubMed Central
PubMed
Google Scholar
Daigle DM, Brown ED: Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro. J Bacteriol. 2004, 186 (5): 1381-1387. 10.1128/JB.186.5.1381-1387.2004.
CAS
PubMed Central
PubMed
Google Scholar
Zhang S, Haldenwang WG: Guanine nucleotides stabilize the binding of Bacillus subtilis Obg to ribosomes. Biochem Biophys Res Commun. 2004, 322 (2): 565-569. 10.1016/j.bbrc.2004.07.154.
CAS
PubMed
Google Scholar
Wout P, Pu K, Sullivan SM, Reese V, Zhou S, Lin B, Maddock JR: The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J Bacteriol. 2004, 186 (16): 5249-5257. 10.1128/JB.186.16.5249-5257.2004.
CAS
PubMed Central
PubMed
Google Scholar
Caldon CE, Yoong P, March PE: Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol. 2001, 41 (2): 289-297. 10.1046/j.1365-2958.2001.02536.x.
CAS
PubMed
Google Scholar
Caldon CE, March PE: Function of the universally conserved bacterial GTPases. Curr Opin Microbiol. 2003, 6 (2): 135-139. 10.1016/S1369-5274(03)00037-7.
CAS
PubMed
Google Scholar
Pandit SB, Srinivasan N: Survey for g-proteins in the prokaryotic genomes: prediction of functional roles based on classification. Proteins. 2003, 52 (4): 585-597. 10.1002/prot.10420.
CAS
PubMed
Google Scholar
Leipe DD, Wolf YI, Koonin EV, Aravind L: Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol. 2002, 317 (1): 41-72. 10.1006/jmbi.2001.5378.
CAS
PubMed
Google Scholar
Pruitt KD, Tatusova T, Maglott DR: NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005, 33 (Database issue): D501-4. 10.1093/nar/gki025.
CAS
PubMed Central
PubMed
Google Scholar
Eddy SR: Profile hidden Markov models. Bioinformatics. 1998, 14 (9): 755-763. 10.1093/bioinformatics/14.9.755.
CAS
PubMed
Google Scholar
Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990, 348 (6297): 125-132. 10.1038/348125a0.
CAS
PubMed
Google Scholar
Butler JS, Springer M, Grunberg-Manago M: AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo. Proc Natl Acad Sci U S A. 1987, 84 (12): 4022-4025. 10.1073/pnas.84.12.4022.
CAS
PubMed Central
PubMed
Google Scholar
Binns N, Masters M: Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol Microbiol. 2002, 44 (5): 1287-1298. 10.1046/j.1365-2958.2002.02945.x.
CAS
PubMed
Google Scholar
Gurvich OL, Baranov PV, Zhou J, Hammer AW, Gesteland RF, Atkins JF: Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli. Embo J. 2003, 22 (21): 5941-5950. 10.1093/emboj/cdg561.
CAS
PubMed Central
PubMed
Google Scholar
Felsenstein J: PHYLIP (Phylogeny Inference Package) version 3.63. 2004, [http://evolution.genetics.washington.edu/phylip.html]
Google Scholar
Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002, 18 (3): 502-504. 10.1093/bioinformatics/18.3.502.
CAS
PubMed
Google Scholar
Garrity GM Bell, J. A., Lilburn, T. G.: Taxonomic Outline of the Procaryotes. Bergey's Manual of Systematic Bacteriology, Second Edition. 2004, Springer-Verlag, 5:
Google Scholar
Gualerzi CO, Pon CL: Initiation of mRNA translation in prokaryotes. Biochemistry. 1990, 29 (25): 5881-5889. 10.1021/bi00477a001.
CAS
PubMed
Google Scholar
Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU: Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev. 2005, 69 (1): 101-123. 10.1128/MMBR.69.1.101-123.2005.
CAS
PubMed Central
PubMed
Google Scholar
Grunberg-Manago M, Dessen P, Pantaloni D, Godefroy-Colburn T, Wolfe AD, Dondon J: Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. J Mol Biol. 1975, 94 (3): 461-478. 10.1016/0022-2836(75)90215-6.
CAS
PubMed
Google Scholar
Antoun A, Pavlov MY, Andersson K, Tenson T, Ehrenberg M: The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. Embo J. 2003, 22 (20): 5593-5601. 10.1093/emboj/cdg525.
CAS
PubMed Central
PubMed
Google Scholar
Lee JH, Choi SK, Roll-Mecak A, Burley SK, Dever TE: Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci U S A. 1999, 96 (8): 4342-4347. 10.1073/pnas.96.8.4342.
CAS
PubMed Central
PubMed
Google Scholar
Kyrpides NC, Woese CR: Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families. Proc Natl Acad Sci U S A. 1998, 95 (7): 3726-3730. 10.1073/pnas.95.7.3726.
CAS
PubMed Central
PubMed
Google Scholar
Hashimoto M, Ichimura T, Mizoguchi H, Tanaka K, Fujimitsu K, Keyamura K, Ote T, Yamakawa T, Yamazaki Y, Mori H, Katayama T, Kato J: Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol Microbiol. 2005, 55 (1): 137-149. 10.1111/j.1365-2958.2004.04386.x.
CAS
PubMed
Google Scholar
Laursen BS, de ASSA, Hedegaard J, Moreno JM, Mortensen KK, Sperling-Petersen HU: Structural requirements of the mRNA for intracistronic translation initiation of the enterobacterial infB gene. Genes Cells. 2002, 7 (9): 901-910. 10.1046/j.1365-2443.2002.00571.x.
CAS
PubMed
Google Scholar
Nyengaard NR, Mortensen KK, Lassen SF, Hershey JW, Sperling-Petersen HU: Tandem translation of E. coli initiation factor IF2 beta: purification and characterization in vitro of two active forms. Biochem Biophys Res Commun. 1991, 181 (3): 1572-1579. 10.1016/0006-291X(91)92118-4.
CAS
PubMed
Google Scholar
Hubert M, Nyengaard NR, Shazand K, Mortensen KK, Lassen SF, Grunberg-Manago M, Sperling-Petersen HU: Tandem translation of Bacillus subtilis initiation factor IF2 in E. coli. Over-expression of infBB.su in E. coli and purification of alpha- and beta-forms of IF2B.su. FEBS Lett. 1992, 312 (2-3): 132-138. 10.1016/0014-5793(92)80920-C.
CAS
PubMed
Google Scholar
Antoun A, Pavlov MY, Tenson T, Ehrenberg MM: Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering. Biol Proced Online. 2004, 6: 35-54. 10.1251/bpo71.
CAS
PubMed Central
PubMed
Google Scholar
Howe JG, Hershey JW: Initiation factor and ribosome levels are coordinately controlled in Escherichia coli growing at different rates. J Biol Chem. 1983, 258 (3): 1954-1959.
CAS
PubMed
Google Scholar
Sacerdot C, Vachon G, Laalami S, Morel-Deville F, Cenatiempo Y, Grunberg-Manago M: Both forms of translational initiation factor IF2 (alpha and beta) are required for maximal growth of Escherichia coli. Evidence for two translational initiation codons for IF2 beta. J Mol Biol. 1992, 225 (1): 67-80. 10.1016/0022-2836(92)91026-L.
CAS
PubMed
Google Scholar
Laursen BS, Mortensen KK, Sperling-Petersen HU, Hoffman DW: A conserved structural motif at the N terminus of bacterial translation initiation factor IF2. J Biol Chem. 2003, 278 (18): 16320-16328. 10.1074/jbc.M212960200.
CAS
PubMed
Google Scholar
Rodnina MV, Gromadski KB, Kothe U, Wieden HJ: Recognition and selection of tRNA in translation. FEBS Lett. 2005, 579 (4): 938-942. 10.1016/j.febslet.2004.11.048.
CAS
PubMed
Google Scholar
Ogle JM, Ramakrishnan V: Structural insights into translational fidelity. Annu Rev Biochem. 2005, 74: 129-177. 10.1146/annurev.biochem.74.061903.155440.
CAS
PubMed
Google Scholar
Thompson RC, Stone PJ: Proofreading of the codon-anticodon interaction on ribosomes. Proc Natl Acad Sci U S A. 1977, 74 (1): 198-202. 10.1073/pnas.74.1.198.
CAS
PubMed Central
PubMed
Google Scholar
Ruusala T, Ehrenberg M, Kurland CG: Is there proofreading during polypeptide synthesis?. Embo J. 1982, 1 (6): 741-745.
CAS
PubMed Central
PubMed
Google Scholar
Kawashima T, Berthet-Colominas C, Wulff M, Cusack S, Leberman R: The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 A resolution. Nature. 1996, 379 (6565): 511-518. 10.1038/379511a0.
CAS
PubMed
Google Scholar
Wang Y, Jiang Y, Meyering-Voss M, Sprinzl M, Sigler PB: Crystal structure of the EF-Tu.EF-Ts complex from Thermus thermophilus. Nat Struct Biol. 1997, 4 (8): 650-656. 10.1038/nsb0897-650.
CAS
PubMed
Google Scholar
Kaziro Y: The role of guanosine 5'-triphosphate in polypeptide chain elongation. Biochim Biophys Acta. 1978, 505(1): 95-127.
Google Scholar
Lathe WC, Bork P: Evolution of tuf genes: ancient duplication, differential loss and gene conversion. FEBS Lett. 2001, 502 (3): 113-116. 10.1016/S0014-5793(01)02639-4.
CAS
PubMed
Google Scholar
Vijgenboom E, Bosch L: Translational frameshifts induced by mutant species of the polypeptide chain elongation factor Tu of Escherichia coli. J Biol Chem. 1989, 264 (22): 13012-13017.
CAS
PubMed
Google Scholar
Abdulkarim F, Hughes D: Homologous recombination between the tuf genes of Salmonella typhimurium. J Mol Biol. 1996, 260 (4): 506-522. 10.1006/jmbi.1996.0418.
CAS
PubMed
Google Scholar
Hughes D: Co-evolution of the tuf genes links gene conversion with the generation of chromosomal inversions. J Mol Biol. 2000, 297 (2): 355-364. 10.1006/jmbi.2000.3587.
CAS
PubMed
Google Scholar
Arwidsson O, Hughes D: Evidence against reciprocal recombination as the basis for tuf gene conversion in Salmonella enterica serovar Typhimurium. J Mol Biol. 2004, 338 (3): 463-467. 10.1016/j.jmb.2004.03.002.
CAS
PubMed
Google Scholar
Liao D: Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea. J Mol Evol. 2000, 51 (4): 305-317.
CAS
PubMed
Google Scholar
Hillis DM, Moritz C, Porter CA, Baker RJ: Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science. 1991, 251 (4991): 308-310. 10.1126/science.1987647.
CAS
PubMed
Google Scholar
Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF: Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol. 2004, 186 (9): 2629-2635. 10.1128/JB.186.9.2629-2635.2004.
CAS
PubMed Central
PubMed
Google Scholar
Dorner S, Brunelle JL, Sharma D, Green R: The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat Struct Mol Biol. 2006, 13 (3): 234-241. 10.1038/nsmb1060.
CAS
PubMed Central
PubMed
Google Scholar
Zavialov AV, Hauryliuk VV, Ehrenberg M: Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs. J Biol. 2005, 4 (2): 9-10.1186/jbiol24.
PubMed Central
PubMed
Google Scholar
Katunin VI, Savelsbergh A, Rodnina MV, Wintermeyer W: Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry. 2002, 41 (42): 12806-12812. 10.1021/bi0264871.
CAS
PubMed
Google Scholar
Wintermeyer W, Savelsbergh A, Semenkov YP, Katunin VI, Rodnina MV: Mechanism of elongation factor G function in tRNA translocation on the ribosome. Cold Spring Harb Symp Quant Biol. 2001, 66: 449-458. 10.1101/sqb.2001.66.449.
CAS
PubMed
Google Scholar
Savelsbergh A, Mohr D, Kothe U, Wintermeyer W, Rodnina MV: Control of phosphate release from elongation factor G by ribosomal protein L7/12. Embo J. 2005, 24 (24): 4316-4323. 10.1038/sj.emboj.7600884.
CAS
PubMed Central
PubMed
Google Scholar
Diaconu M, Kothe U, Schlunzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC: Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell. 2005, 121 (7): 991-1004. 10.1016/j.cell.2005.04.015.
CAS
PubMed
Google Scholar
Hirokawa G, Kiel MC, Muto A, Selmer M, Raj VS, Liljas A, Igarashi K, Kaji H, Kaji A: Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. Embo J. 2002, 21 (9): 2272-2281. 10.1093/emboj/21.9.2272.
CAS
PubMed Central
PubMed
Google Scholar
Zavialov AV, Hauryliuk VV, Ehrenberg M: Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol Cell. 2005, 18 (6): 675-686. 10.1016/j.molcel.2005.05.016.
CAS
PubMed
Google Scholar
Peske F, Rodnina MV, Wintermeyer W: Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell. 2005, 18 (4): 403-412. 10.1016/j.molcel.2005.04.009.
CAS
PubMed
Google Scholar
Fujiwara T, Ito K, Yamami T, Nakamura Y: Ribosome recycling factor disassembles the post-termination ribosomal complex independent of the ribosomal translocase activity of elongation factor G. Mol Microbiol. 2004, 53 (2): 517-528. 10.1111/j.1365-2958.2004.04156.x.
CAS
PubMed
Google Scholar
Chopra I, Roberts M: Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001, 65 (2): 232-60 ; second page, table of contents. 10.1128/MMBR.65.2.232-260.2001.
CAS
PubMed Central
PubMed
Google Scholar
Roberts MC: Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005, 245 (2): 195-203. 10.1016/j.femsle.2005.02.034.
CAS
PubMed
Google Scholar
Connell SR, Tracz DM, Nierhaus KH, Taylor DE: Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother. 2003, 47 (12): 3675-3681. 10.1128/AAC.47.12.3675-3681.2003.
CAS
PubMed Central
PubMed
Google Scholar
Connell SR, Trieber CA, Dinos GP, Einfeldt E, Taylor DE, Nierhaus KH: Mechanism of Tet(O)-mediated tetracycline resistance. Embo J. 2003, 22 (4): 945-953. 10.1093/emboj/cdg093.
CAS
PubMed Central
PubMed
Google Scholar
Spahn CM, Blaha G, Agrawal RK, Penczek P, Grassucci RA, Trieber CA, Connell SR, Taylor DE, Nierhaus KH, Frank J: Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol Cell. 2001, 7 (5): 1037-1045. 10.1016/S1097-2765(01)00238-6.
CAS
PubMed
Google Scholar
March PE, Inouye M: GTP-binding membrane protein of Escherichia coli with sequence homology to initiation factor 2 and elongation factors Tu and G. Proc Natl Acad Sci U S A. 1985, 82 (22): 7500-7504. 10.1073/pnas.82.22.7500.
CAS
PubMed Central
PubMed
Google Scholar
Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS: Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J Biol Chem. 2003, 278 (24): 21972-21979. 10.1074/jbc.M302109200.
CAS
PubMed
Google Scholar
Qin Y, Polacek N, Vesper O, Staub E, Einfeldt E, Wilson DN, Nierhaus KH: The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell. 2006, 127 (4): 721-733. 10.1016/j.cell.2006.09.037.
CAS
PubMed
Google Scholar
Dibb NJ, Wolfe PB: lep operon proximal gene is not required for growth or secretion by Escherichia coli. J Bacteriol. 1986, 166 (1): 83-87.
CAS
PubMed Central
PubMed
Google Scholar
Ito K, Uno M, Nakamura Y: A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature. 2000, 403 (6770): 680-684. 10.1038/35001115.
CAS
PubMed
Google Scholar
Petry S, Brodersen DE, Murphy FV, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V: Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell. 2005, 123 (7): 1255-1266. 10.1016/j.cell.2005.09.039.
CAS
PubMed
Google Scholar
Zavialov AV, Buckingham RH, Ehrenberg M: A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell. 2001, 107 (1): 115-124. 10.1016/S0092-8674(01)00508-6.
CAS
PubMed
Google Scholar
Freistroffer DV, Pavlov MY, MacDougall J, Buckingham RH, Ehrenberg M: Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. Embo J. 1997, 16 (13): 4126-4133. 10.1093/emboj/16.13.4126.
CAS
PubMed Central
PubMed
Google Scholar
Grentzmann G, Brechemier-Baey D, Heurgue V, Mora L, Buckingham RH: Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci U S A. 1994, 91 (13): 5848-5852. 10.1073/pnas.91.13.5848.
CAS
PubMed Central
PubMed
Google Scholar
Mikuni O, Ito K, Moffat J, Matsumura K, McCaughan K, Nobukuni T, Tate W, Nakamura Y: Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci U S A. 1994, 91 (13): 5798-5802. 10.1073/pnas.91.13.5798.
CAS
PubMed Central
PubMed
Google Scholar
Inagaki Y, Ford Doolittle W: Evolution of the eukaryotic translation termination system: origins of release factors. Mol Biol Evol. 2000, 17 (6): 882-889.
CAS
PubMed
Google Scholar
Shin BS, Maag D, Roll-Mecak A, Arefin MS, Burley SK, Lorsch JR, Dever TE: Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell. 2002, 111 (7): 1015-1025. 10.1016/S0092-8674(02)01171-6.
CAS
PubMed
Google Scholar
Bock A, Forchhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F: Selenocysteine: the 21st amino acid. Mol Microbiol. 1991, 5 (3): 515-520. 10.1111/j.1365-2958.1991.tb00722.x.
CAS
PubMed
Google Scholar
Zinoni F, Heider J, Bock A: Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine. Proc Natl Acad Sci U S A. 1990, 87 (12): 4660-4664. 10.1073/pnas.87.12.4660.
CAS
PubMed Central
PubMed
Google Scholar
Huttenhofer A, Heider J, Bock A: Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome. Nucleic Acids Res. 1996, 24 (20): 3903-3910. 10.1093/nar/24.20.3903.
CAS
PubMed Central
PubMed
Google Scholar
Yoshizawa S, Rasubala L, Ose T, Kohda D, Fourmy D, Maenaka K: Structural basis for mRNA recognition by elongation factor SelB. Nat Struct Mol Biol. 2005, 12 (2): 198-203. 10.1038/nsmb890.
CAS
PubMed
Google Scholar
Leibundgut M, Frick C, Thanbichler M, Bock A, Ban N: Selenocysteine tRNA-specific elongation factor SelB is a structural chimaera of elongation and initiation factors. Embo J. 2005, 24 (1): 11-22. 10.1038/sj.emboj.7600505.
CAS
PubMed Central
PubMed
Google Scholar
Commans S, Bock A: Selenocysteine inserting tRNAs: an overview. FEMS Microbiol Rev. 1999, 23 (3): 335-351. 10.1111/j.1574-6976.1999.tb00403.x.
CAS
PubMed
Google Scholar
Matsugi J, Murao K: Genomic investigation of the system for selenocysteine incorporation in the bacterial domain. Biochim Biophys Acta. 2004, 1676 (1): 23-32.
CAS
PubMed
Google Scholar
Romero H, Zhang Y, Gladyshev VN, Salinas G: Evolution of selenium utilization traits. Genome Biol. 2005, 6 (8): R66-10.1186/gb-2005-6-8-r66.
PubMed Central
PubMed
Google Scholar
Farris M, Grant A, Richardson TB, O'Connor CD: BipA: a tyrosine-phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells. Mol Microbiol. 1998, 28 (2): 265-279. 10.1046/j.1365-2958.1998.00793.x.
CAS
PubMed
Google Scholar
Grant AJ, Farris M, Alefounder P, Williams PH, Woodward MJ, O'Connor CD: Co-ordination of pathogenicity island expression by the BipA GTPase in enteropathogenic Escherichia coli (EPEC). Mol Microbiol. 2003, 48 (2): 507-521. 10.1046/j.1365-2958.2003.t01-1-03447.x.
CAS
PubMed
Google Scholar
Rowe S, Hodson N, Griffiths G, Roberts IS: Regulation of the Escherichia coli K5 capsule gene cluster: evidence for the roles of H-NS, BipA, and integration host factor in regulation of group 2 capsule gene clusters in pathogenic E. coli. J Bacteriol. 2000, 182 (10): 2741-2745. 10.1128/JB.182.10.2741-2745.2000.
CAS
PubMed Central
PubMed
Google Scholar
Pfennig PL, Flower AM: BipA is required for growth of Escherichia coi K12 at low temperature. Mol Genet Genomics. 2001, 266 (2): 313-317. 10.1007/s004380100559.
CAS
PubMed
Google Scholar
Kiss E, Huguet T, Poinsot V, Batut J: The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol Plant Microbe Interact. 2004, 17 (3): 235-244.
CAS
PubMed
Google Scholar
Owens RM, Pritchard G, Skipp P, Hodey M, Connell SR, Nierhaus KH, O'Connor CD: A dedicated translation factor controls the synthesis of the global regulator Fis. Embo J. 2004, 23 (16): 3375-3385. 10.1038/sj.emboj.7600343.
CAS
PubMed Central
PubMed
Google Scholar
Kredich KM: Biosynthesis of Cysteine. Escherichia coli and Salmonella: Cellular and Molecular Biology Neidhardt FC, Curtis III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE , editors. 1996, Washington DC , ASM Press, 2: 514–527-
Google Scholar
Schwedock JS, Long SR: Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa. Genetics. 1992, 132 (4): 899-909.
CAS
PubMed Central
PubMed
Google Scholar
Schwedock J, Long SR: ATP sulphurylase activity of the nodP and nodQ gene products of Rhizobium meliloti. Nature. 1990, 348 (6302): 644-647. 10.1038/348644a0.
CAS
PubMed
Google Scholar
Inagaki Y, Doolittle WF, Baldauf SL, Roger AJ: Lateral transfer of an EF-1alpha gene: origin and evolution of the large subunit of ATP sulfurylase in eubacteria. Curr Biol. 2002, 12 (9): 772-776. 10.1016/S0960-9822(02)00816-3.
CAS
PubMed
Google Scholar
Mougous JD, Lee DH, Hubbard SC, Schelle MW, Vocadlo DJ, Berger JM, Bertozzi CR: Molecular basis for G protein control of the prokaryotic ATP sulfurylase. Mol Cell. 2006, 21 (1): 109-122. 10.1016/j.molcel.2005.10.034.
CAS
PubMed
Google Scholar
Rosenthal E, Leustek T: A multifunctional Urechis caupo protein, PAPS synthetase, has both ATP sulfurylase and APS kinase activities. Gene. 1995, 165 (2): 243-248. 10.1016/0378-1119(95)00450-K.
CAS
PubMed
Google Scholar
Kurima K, Warman ML, Krishnan S, Domowicz M, Krueger RC, Deyrup A, Schwartz NB: A member of a family of sulfate-activating enzymes causes murine brachymorphism. Proc Natl Acad Sci U S A. 1998, 95 (15): 8681-8685. 10.1073/pnas.95.15.8681.
CAS
PubMed Central
PubMed
Google Scholar
NCBI: Bacterial sequence database. [ftp://ftp.ncbi.nih.gov/genomes/Bacteria/]
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
CAS
PubMed Central
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR: The Pfam protein families database. Nucleic Acids Res. 2004, 32 (Database issue): D138-41. 10.1093/nar/gkh121.
CAS
PubMed Central
PubMed
Google Scholar
Sonnhammer EL, Hollich V: Scoredist: a simple and robust protein sequence distance estimator. BMC Bioinformatics. 2005, 6 (1): 108-10.1186/1471-2105-6-108.
PubMed Central
PubMed
Google Scholar
Kumar S, Tamura K, Nei M: MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 2004, 5 (2): 150-163. 10.1093/bib/5.2.150.
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673.
CAS
PubMed Central
PubMed
Google Scholar
MacRae IJ, Rose AB, Segel IH: Adenosine 5'-phosphosulfate kinase from Penicillium chrysogenum. site-directed mutagenesis at putative phosphoryl-accepting and ATP P-loop residues. J Biol Chem. 1998, 273 (44): 28583-28589. 10.1074/jbc.273.44.28583.
CAS
PubMed
Google Scholar
Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991, 349 (6305): 117-127. 10.1038/349117a0.
CAS
PubMed
Google Scholar
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics. 2000, 16 (10): 944-945. 10.1093/bioinformatics/16.10.944.
CAS
PubMed
Google Scholar
Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000, 16 (6): 276-277. 10.1016/S0168-9525(00)02024-2.
CAS
PubMed
Google Scholar
Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM: The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 2005, 33 (Database issue): D294-6. 10.1093/nar/gki038.
CAS
PubMed Central
PubMed
Google Scholar
Olsen GJ, Matsuda H, Hagstrom R, Overbeek R: fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci. 1994, 10 (1): 41-48.
CAS
PubMed
Google Scholar