Richman AM, Dimopoulos G, Seeley D, Kafatos FC: Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. Embo J. 1997, 16 (20): 6114-6119. 10.1093/emboj/16.20.6114.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dimopoulos G, Richman A, Muller HM, Kafatos FC: Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A. 1997, 94 (21): 11508-11513. 10.1073/pnas.94.21.11508.
Article
CAS
PubMed Central
PubMed
Google Scholar
Luckhart S, Vodovotz Y, Cui L, Rosenberg R: The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci U S A. 1998, 95 (10): 5700-5705. 10.1073/pnas.95.10.5700.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G: Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog. 2006, 2 (6): e52-10.1371/journal.ppat.0020052.
Article
PubMed Central
PubMed
Google Scholar
Aguilar R, Dong Y, Warr E, Dimopoulos G: Anopheles infection responses; laboratory models versus field malaria transmission systems. Acta Trop. 2005, 95 (3): 285-291. 10.1016/j.actatropica.2005.06.005.
Article
PubMed
Google Scholar
Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC: Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Curr Biol. 2005, 15 (13): 1185-1195. 10.1016/j.cub.2005.06.044.
Article
CAS
PubMed
Google Scholar
Xu X, Dong Y, Abraham EG, Kocan A, Srinivasan P, Ghosh AK, Sinden RE, Ribeiro JM, Jacobs-Lorena M, Kafatos FC: Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions. Mol Biochem Parasitol. 2005, 142 (1): 76-87. 10.1016/j.molbiopara.2005.02.013.
Article
CAS
PubMed
Google Scholar
Dana AN, Hong YS, Kern MK, Hillenmeyer ME, Harker BW, Lobo NF, Hogan JR, Romans P, Collins FH: Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae. BMC Genomics. 2005, 6 (1): 5-10.1186/1471-2164-6-5.
Article
PubMed Central
PubMed
Google Scholar
Sanders HR, Evans AM, Ross LS, Gill SS: Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. Insect Biochem Mol Biol. 2003, 33 (11): 1105-1122. 10.1016/S0965-1748(03)00124-3.
Article
CAS
PubMed
Google Scholar
Marinotti O, Nguyen QK, Calvo E, James AA, Ribeiro JM: Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol Biol. 2005, 14 (4): 365-373. 10.1111/j.1365-2583.2005.00567.x.
Article
CAS
PubMed
Google Scholar
Dimopoulos G, Seeley D, Wolf A, Kafatos FC: Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. Embo J. 1998, 17 (21): 6115-6123. 10.1093/emboj/17.21.6115.
Article
CAS
PubMed Central
PubMed
Google Scholar
Aguilar R, Jedlicka AE, Mintz M, Mahairaki V, Scott AL, Dimopoulos G: Global gene expression analysis of Anopheles gambiae responses to microbial challenge. Insect Biochem Mol Biol. 2005, 35 (7): 709-719. 10.1016/j.ibmb.2005.02.019.
Article
CAS
PubMed
Google Scholar
Okuda K, Caroci A, Ribolla P, Marinotti O, de Bianchi AG, Bijovsky AT: Morphological and enzymatic analysis of the midgut of Anopheles darlingi during blood digestion. J Insect Physiol. 2005, 51 (7): 769-776. 10.1016/j.jinsphys.2005.03.010.
Article
CAS
PubMed
Google Scholar
Pennington DA, Clegg W, Coles SJ, Harrington RW, Hursthouse MB, Hughes DL, Light ME, Schormann M, Bochmann M, Lancaster SJ: The synthesis, structure and ethene polymerisation catalysis of mono(salicylaldiminato) titanium and zirconium complexes. Dalton Trans. 2005, 561-571. 10.1039/b414229b. 3
Billingsley PF, Hecker H: Blood digestion in the mosquito, Anopheles stephensi Liston (Diptera: Culicidae): activity and distribution of trypsin, aminopeptidase, and alpha-glucosidase in the midgut. J Med Entomol. 1991, 28 (6): 865-871.
Article
CAS
PubMed
Google Scholar
Okuda K, de Souza Caroci A, Ribolla PE, de Bianchi AG, Bijovsky AT: Functional morphology of adult female Culex quinquefasciatus midgut during blood digestion. Tissue Cell. 2002, 34 (3): 210-219. 10.1016/S0040-8166(02)00032-0.
Article
CAS
PubMed
Google Scholar
Vizioli J, Catteruccia F, della Torre A, Reckmann I, Muller HM: Blood digestion in the malaria mosquito Anopheles gambiae: molecular cloning and biochemical characterization of two inducible chymotrypsins. Eur J Biochem. 2001, 268 (14): 4027-4035. 10.1046/j.1432-1327.2001.02315.x.
Article
CAS
PubMed
Google Scholar
Muller HM, Crampton JM, della Torre A, Sinden R, Crisanti A: Members of a trypsin gene family in Anopheles gambiae are induced in the gut by blood meal. Embo J. 1993, 12 (7): 2891-2900.
CAS
PubMed Central
PubMed
Google Scholar
Muller HM, Catteruccia F, Vizioli J, della Torre A, Crisanti A: Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp Parasitol. 1995, 81 (3): 371-385. 10.1006/expr.1995.1128.
Article
CAS
PubMed
Google Scholar
Huber M, Cabib E, Miller LH: Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proc Natl Acad Sci U S A. 1991, 88 (7): 2807-2810. 10.1073/pnas.88.7.2807.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shahabuddin M, Toyoshima T, Aikawa M, Kaslow DC: Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. Proc Natl Acad Sci U S A. 1993, 90 (9): 4266-4270. 10.1073/pnas.90.9.4266.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shahabuddin M, Kaslow DC: Plasmodium: parasite chitinase and its role in malaria transmission. Exp Parasitol. 1994, 79 (1): 85-88. 10.1006/expr.1994.1066.
Article
CAS
PubMed
Google Scholar
Tellam RL, Wijffels G, Willadsen P: Peritrophic matrix proteins. Insect Biochem Mol Biol. 1999, 29 (2): 87-101. 10.1016/S0965-1748(98)00123-4.
Article
CAS
PubMed
Google Scholar
Villalon JM, Ghosh A, Jacobs-Lorena M: The peritrophic matrix limits the rate of digestion in adult Anopheles stephensi and Aedes aegypti mosquitoes. J Insect Physiol. 2003, 49 (10): 891-895. 10.1016/S0022-1910(03)00135-5.
Article
CAS
PubMed
Google Scholar
Devenport M, Fujioka H, Jacobs-Lorena M: Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae. Insect Mol Biol. 2004, 13 (4): 349-358. 10.1111/j.0962-1075.2004.00488.x.
Article
CAS
PubMed
Google Scholar
Filho BP, Lemos FJ, Secundino NF, Pascoa V, Pereira ST, Pimenta PF: Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti. a chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochem Mol Biol. 2002, 32 (12): 1723-1729. 10.1016/S0965-1748(02)00112-1.
Article
CAS
PubMed
Google Scholar
Abraham EG, Donnelly-Doman M, Fujioka H, Ghosh A, Moreira L, Jacobs-Lorena M: Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. Insect Mol Biol. 2005, 14 (3): 271-279. 10.1111/j.1365-2583.2004.00557.x.
Article
CAS
PubMed
Google Scholar
Shao L, Devenport M, Fujioka H, Ghosh A, Jacobs-Lorena M: Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2005, 35 (9): 947-959. 10.1016/j.ibmb.2005.03.012.
Article
CAS
PubMed
Google Scholar
Cociancich SO, Park SS, Fidock DA, Shahabuddin M: Vesicular ATPase-overexpressing cells determine the distribution of malaria parasite oocysts on the midguts of mosquitoes. J Biol Chem. 1999, 274 (18): 12650-12655. 10.1074/jbc.274.18.12650.
Article
CAS
PubMed
Google Scholar
Shahabuddin M: Plasmodium ookinete development in the mosquito midgut: a case of reciprocal manipulation. Parasitology. 1998, 116 (Suppl): S83-93.
Article
PubMed
Google Scholar
Shahabuddin M: Do Plasmodium ookinetes invade a specific cell type in the mosquito midgut?. Trends Parasitol. 2002, 18 (4): 157-161. 10.1016/S1471-4922(01)02219-X.
Article
CAS
PubMed
Google Scholar
Lehane MJ, Wu D, Lehane SM: Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A. 1997, 94 (21): 11502-11507. 10.1073/pnas.94.21.11502.
Article
CAS
PubMed Central
PubMed
Google Scholar
Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC, Levashina EA: Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell. 2004, 116 (5): 661-670. 10.1016/S0092-8674(04)00173-4.
Article
CAS
PubMed
Google Scholar
Vizioli J, Bulet P, Hoffmann JA, Kafatos FC, Muller HM, Dimopoulos G: Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A. 2001, 98 (22): 12630-12635. 10.1073/pnas.221466798.
Article
CAS
PubMed Central
PubMed
Google Scholar
Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Ribeiro JM: Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem Mol Biol. 2003, 33 (7): 717-732. 10.1016/S0965-1748(03)00067-5.
Article
CAS
PubMed
Google Scholar
Oduol F, Xu J, Niare O, Natarajan R, Vernick KD: Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci U S A. 2000, 97 (21): 11397-11402. 10.1073/pnas.180060997.
Article
CAS
PubMed Central
PubMed
Google Scholar
Patat SA, Carnegie RB, Kingsbury C, Gross PS, Chapman R, Schey KL: Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur J Biochem. 2004, 271 (23–24): 4825-4833. 10.1111/j.1432-1033.2004.04448.x.
Article
CAS
PubMed
Google Scholar
Nachman RJ, Holman GM, Haddon WF, Vensel WH: An active pseudopeptide analog of the leucokinin insect neuropeptide family. Int J Pept Protein Res. 1991, 37 (3): 220-223.
Article
CAS
PubMed
Google Scholar
Harshini S, Nachman RJ, Sreekumar S: Inhibition of digestive enzyme release by neuropeptides in larvae of Opisina arenosella (Lepidoptera: Cryptophasidae). Comp Biochem Physiol B Biochem Mol Biol. 2002, 132 (2): 353-358.
Article
CAS
PubMed
Google Scholar
Prevot GI, Laurent-Winter C, Rodhain F, Bourgouin C: Sex-specific and blood meal-induced proteins of Anopheles gambiae midguts: analysis by two-dimensional gel electrophoresis. Malar J. 2003, 2: 1-10.1186/1475-2875-2-1.
Article
CAS
PubMed Central
PubMed
Google Scholar
Demaio J, Pumpuni CB, Kent M, Beier JC: The midgut bacterial flora of wild Aedes triseriatus, Culex pipiens, and Psorophora columbiae mosquitoes. Am J Trop Med Hyg. 1996, 54 (2): 219-223.
CAS
PubMed
Google Scholar
Osta MA, Christophides GK, Kafatos FC: Effects of mosquito genes on Plasmodium development. Science. 2004, 303 (5666): 2030-2032. 10.1126/science.1091789.
Article
CAS
PubMed
Google Scholar
Moreira LA, Ghosh AK, Abraham EG, Jacobs-Lorena M: Genetic transformation of mosquitoes: a quest for malaria control. Int J Parasitol. 2002, 32 (13): 1599-1605. 10.1016/S0020-7519(02)00188-1.
Article
CAS
PubMed
Google Scholar
Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H, Abraham EG, Crisanti A, Nolan T, Catteruccia F, Jacobs-Lorena M: Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem. 2002, 277 (43): 40839-40843. 10.1074/jbc.M206647200.
Article
CAS
PubMed
Google Scholar