Bird CP, Stranger BE, Dermitzakis ET: Functional variation and evolution of non-coding DNA. Curr Opin Genet Dev. 2006, 16 (6): 559-564. 10.1016/j.gde.2006.10.003.
Article
CAS
PubMed
Google Scholar
Maizels N: Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat Struct Mol Biol. 2006, 13 (12): 1055-1059. 10.1038/nsmb1171.
Article
CAS
PubMed
Google Scholar
Gellert M, Lipsett MN, Davies DR: Helix formation by guanylic acid. Proc Natl Acad Sci U S A. 1962, 48: 2013-2018. 10.1073/pnas.48.12.2013.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dempsey LA, Sun H, Hanakahi LA, Maizels N: G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D, A role for G-G pairing in immunoglobulin switch recombination. J Biol Chem. 1999, 274 (2): 1066-1071. 10.1074/jbc.274.2.1066.
Article
CAS
PubMed
Google Scholar
Zhang QS, Manche L, Xu RM, Krainer AR: hnRNP A1 associates with telomere ends and stimulates telomerase activity. Rna. 2006, 12 (6): 1116-1128. 10.1261/rna.58806.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hanakahi LA, Sun H, Maizels N: High affinity interactions of nucleolin with G-G-paired rDNA. J Biol Chem. 1999, 274 (22): 15908-15912. 10.1074/jbc.274.22.15908.
Article
CAS
PubMed
Google Scholar
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH: Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A. 2002, 99 (18): 11593-11598. 10.1073/pnas.182256799.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sen D, Gilbert W: Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988, 334 (6180): 364-366. 10.1038/334364a0.
Article
CAS
PubMed
Google Scholar
Liu Z, Lee A, Gilbert W: Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening. Proc Natl Acad Sci U S A. 1995, 92 (13): 6002-6006. 10.1073/pnas.92.13.6002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sun H, Bennett RJ, Maizels N: The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res. 1999, 27 (9): 1978-1984. 10.1093/nar/27.9.1978.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ghosal G, Muniyappa K: Saccharomyces cerevisiae Mre11 is a high-affinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease: implications for replication of telomeric DNA. Nucleic Acids Res. 2005, 33 (15): 4692-4703. 10.1093/nar/gki777.
Article
CAS
PubMed Central
PubMed
Google Scholar
Muniyappa K, Anuradha S, Byers B: Yeast meiosis-specific protein Hop1 binds to G4 DNA and promotes its formation. Mol Cell Biol. 2000, 20 (4): 1361-1369. 10.1128/MCB.20.4.1361-1369.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Anuradha S, Muniyappa K: Meiosis-specific yeast Hop1 protein promotes synapsis of double-stranded DNA helices via the formation of guanine quartets. Nucleic Acids Res. 2004, 32 (8): 2378-2385. 10.1093/nar/gkh559.
Article
CAS
PubMed Central
PubMed
Google Scholar
Anuradha S, Tripathi P, Mahajan K, Muniyappa K: Meiosis-specific yeast Hop1 protein promotes pairing of double-stranded DNA helices via G/C isochores. Biochem Biophys Res Commun. 2005, 336 (3): 934-941. 10.1016/j.bbrc.2005.08.196.
Article
CAS
PubMed
Google Scholar
Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N: Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 2004, 18 (13): 1618-1629. 10.1101/gad.1200804.
Article
CAS
PubMed Central
PubMed
Google Scholar
CelegansSequencingConsortium: Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998, 282 (5396): 2012-2018. 10.1126/science.282.5396.2012.
Article
Google Scholar
Denver DR, Morris K, Kewalramani A, Harris KE, Chow A, Estes S, Lynch M, Thomas WK: Abundance, distribution, and mutation rates of homopolymeric nucleotide runs in the genome of Caenorhabditis elegans. J Mol Evol. 2004, 58 (5): 584-595. 10.1007/s00239-004-2580-4.
Article
CAS
PubMed
Google Scholar
Cheung I, Schertzer M, Rose A, Lansdorp PM: Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat Genet. 2002, 31 (4): 405-409.
CAS
PubMed
Google Scholar
Youds JL, O'Neil NJ, Rose AM: Homologous recombination is required for genome stability in the absence of DOG-1 in Caenorhabditis elegans. Genetics. 2006, 173 (2): 697-708. 10.1534/genetics.106.056879.
Article
CAS
PubMed Central
PubMed
Google Scholar
Maydan JS, Flibotte S, Edgley ML, Lau J, Selzer RR, Richmond TA, Pofahl NJ, Thomas JH, Moerman DG: Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. Genome Res. 2007, 17 (3): 337-347. 10.1101/gr.5690307.
Article
CAS
PubMed Central
PubMed
Google Scholar
Swan KA, Curtis DE, McKusick KB, Voinov AV, Mapa FA, Cancilla MR: High-throughput gene mapping in Caenorhabditis elegans. Genome Res. 2002, 12 (7): 1100-1105.
CAS
PubMed Central
PubMed
Google Scholar
Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D'Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH: The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 2003, 1 (2): E45-10.1371/journal.pbio.0000045.
Article
PubMed Central
PubMed
Google Scholar
Wormbase: [http://www.wormbase.org/]
Barnes TM, Kohara Y, Coulson A, Hekimi S: Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995, 141 (1): 159-179.
CAS
PubMed Central
PubMed
Google Scholar
Prachumwat A, DeVincentis L, Palopoli MF: Intron size correlates positively with recombination rate in Caenorhabditis elegans. Genetics. 2004, 166 (3): 1585-1590. 10.1534/genetics.166.3.1585.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chakravarti A: A graphical representation of genetic and physical maps: the Marey map. Genomics. 1991, 11 (1): 219-222. 10.1016/0888-7543(91)90123-V.
Article
CAS
PubMed
Google Scholar
Kent WJ, Zahler AM: Conservation, regulation, synteny, and introns in a large-scale C. briggsae- C. elegans genomic alignment. Genome Res. 2000, 10 (8): 1115-1125. 10.1101/gr.10.8.1115.
Article
CAS
PubMed
Google Scholar
Hillier LW, Miller RD, Baird SE, Chinwalla A, Fulton LA, Koboldt DC, Waterston RH: Comparison of C. elegans and C. briggsae Genome Sequences Reveals Extensive Conservation of Chromosome Organization and Synteny. PLoS Biol. 2007, 5 (7): e167-10.1371/journal.pbio.0050167.
Article
PubMed Central
PubMed
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003, 4: 41-10.1186/1471-2105-4-41.
Article
PubMed Central
PubMed
Google Scholar
Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004, 5 (2): R7-10.1186/gb-2004-5-2-r7.
Article
PubMed Central
PubMed
Google Scholar
Eddy J, Maizels N: Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006
Google Scholar
McKay SJ, Johnsen R, Khattra J, Asano J, Baillie DL, Chan S, Dube N, Fang L, Goszczynski B, Ha E, Halfnight E, Hollebakken R, Huang P, Hung K, Jensen V, Jones SJ, Kai H, Li D, Mah A, Marra M, McGhee J, Newbury R, Pouzyrev A, Riddle DL, Sonnhammer E, Tian H, Tu D, Tyson JR, Vatcher G, Warner A, Wong K, Zhao Z, Moerman DG: Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb Symp Quant Biol. 2003, 68: 159-169. 10.1101/sqb.2003.68.159.
Article
CAS
PubMed
Google Scholar
GuhaThakurta D, Schriefer LA, Waterston RH, Stormo GD: Novel transcription regulatory elements in Caenorhabditis elegans muscle genes. Genome Res. 2004, 14 (12): 2457-2468. 10.1101/gr.2961104.
Article
PubMed Central
PubMed
Google Scholar
Larson ED, Duquette ML, Cummings WJ, Streiff RJ, Maizels N: MutSalpha binds to and promotes synapsis of transcriptionally activated immunoglobulin switch regions. Curr Biol. 2005, 15 (5): 470-474. 10.1016/j.cub.2004.12.077.
Article
CAS
PubMed
Google Scholar
Joyce EF, McKim KS: When specialized sites are important for synapsis and the distribution of crossovers. Bioessays. 2007, 29 (3): 217-226. 10.1002/bies.20531.
Article
CAS
PubMed
Google Scholar
Rosenbluth RE, Baillie DL: The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans. Genetics. 1981, 99 (3-4): 415-428.
CAS
PubMed Central
PubMed
Google Scholar
McKim KS, Howell AM, Rose AM: The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics. 1988, 120 (4): 987-1001.
CAS
PubMed Central
PubMed
Google Scholar
Phillips CM, Dernburg AF: A family of zinc-finger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans. Dev Cell. 2006, 11 (6): 817-829. 10.1016/j.devcel.2006.09.020.
Article
CAS
PubMed
Google Scholar
Phillips CM, Wong C, Bhalla N, Carlton PM, Weiser P, Meneely PM, Dernburg AF: HIM-8 Binds to the X Chromosome Pairing Center and Mediates Chromosome-Specific Meiotic Synapsis. Cell. 2005, 123 (6): 1051-1063. 10.1016/j.cell.2005.09.035.
Article
CAS
PubMed Central
PubMed
Google Scholar
Macqueen AJ, Phillips CM, Bhalla N, Weiser P, Villeneuve AM, Dernburg AF: Chromosome Sites Play Dual Roles to Establish Homologous Synapsis during Meiosis in C. elegans. Cell. 2005, 123 (6): 1037-1050. 10.1016/j.cell.2005.09.034.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rosenbluth RE, Johnsen RC, Baillie DL: Pairing for recombination in LGV of Caenorhabditis elegans: a model based on recombination in deficiency heterozygotes. Genetics. 1990, 124 (3): 615-625.
CAS
PubMed Central
PubMed
Google Scholar
McKim KS, Peters K, Rose AM: Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics. 1993, 134 (3): 749-768.
CAS
PubMed Central
PubMed
Google Scholar
Couteau F, Nabeshima K, Villeneuve A, Zetka M: A component of C. elegans meiotic chromosome axes at the interface of homolog alignment, synapsis, nuclear reorganization, and recombination. Curr Biol. 2004, 14 (7): 585-592. 10.1016/j.cub.2004.03.033.
Article
CAS
PubMed
Google Scholar
Martinez-Perez E, Villeneuve AM: HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev. 2005, 19 (22): 2727-2743. 10.1101/gad.1338505.
Article
CAS
PubMed Central
PubMed
Google Scholar
Couteau F, Zetka M: HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans. Genes Dev. 2005, 19 (22): 2744-2756. 10.1101/gad.1348205.
Article
CAS
PubMed Central
PubMed
Google Scholar
GenomeBCCelegansGeneExpressionConsortium: [http://www.elegans.bcgsc.bc.ca/]
Brenner S: The genetics of Caenorhabditis elegans. Genetics. 1974, 77 (1): 71-94.
CAS
PubMed Central
PubMed
Google Scholar