Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ, Chen R, Meisel RP, Couronne O, Hua S, Smith MA, Zhang P, Liu J, Bussemaker HJ, van Batenburg MF, Howells SL, Scherer SE, Sodergren E, Matthews BB, Crosby MA, Schroeder AJ, Ortiz-Barrientos D, Rives CM, Metzker ML, Muzny DM, Scott G, Steffen D, Wheeler DA, Worley HC, Havlak P, Durbin KJ, Egan A, Gill R, Hume J, Morgan MB, Miner G, Hamilton C, Huang Y, Waldron L, Verduzco D, Clerc-Blankenburg KP, Dubchak I, Noor MA, Anderson W, White KP, Clark AG, Schaeffer SW, Gelbart W, Weinstock GM, Gibbs RA: Comparative genome sequencing of Drosophila pseudoobscura : chromosomal, gene, and cis-elements evolution. Genome Res. 2005, 15: 1-18. 10.1101/gr.3059305.
Article
CAS
PubMed Central
PubMed
Google Scholar
Halligan DL, Keightley PD: Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res. 2006, 16: 875-884. 10.1101/gr.5022906.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ko WY, Piao S, Akashi H: Strong regional heterogeneity in base composition evolution on the Drosophila X chromosome. Genetics. 2006, 174: 349-362. 10.1534/genetics.105.054346.
Article
CAS
PubMed Central
PubMed
Google Scholar
Musters H, Huntley MA, Singh RS: A genomic comparison of faster-sex, faster-X, and faster-male evolution between Drosophila melanogaster and Drosophila pseudoobscura. J Mol Evol. 2006, 62: 693-700. 10.1007/s00239-005-0165-5.
Article
CAS
PubMed
Google Scholar
Presgraves DC: Intron length evolution in Drosophila. Mol Biol Evol. 2006, 23: 2203-2213. 10.1093/molbev/msl094.
Article
CAS
PubMed
Google Scholar
Thornton K, Bachtrog D, Andofatto P: X chromosomes and autosomes evolve at similar rates in Drosophila : no evidence for faster-X protein evolution. Genome Res. 2006, 16: 498-504. 10.1101/gr.4447906.
Article
CAS
PubMed Central
PubMed
Google Scholar
John B, Miklos G: The eukaryote genome in development and evolution. 1988, London: Allen and Unwin
Google Scholar
Charlesworth B, Langley CH: The population genetics of Drosophila transposable elements. Annu Rev Genet. 1989, 23: 251-287. 10.1146/annurev.ge.23.120189.001343.
Article
CAS
PubMed
Google Scholar
Waring GL, Pollack JC: Cloning and characterization of a dispersed, multicopy, X chromosome sequence in Drosophila melanogaster. Proc Natl Acad Sci USA. 1987, 84: 2843-2847. 10.1073/pnas.84.9.2843.
Article
CAS
PubMed Central
PubMed
Google Scholar
DiBartolomeis S, Tartof KD, Jackson FR: A superfamily of Drosophila satellite related (SR) DNA repeats restricted to the X chromosome euchromatin. Nucleic Acids Res. 1992, 20: 1113-1116. 10.1093/nar/20.5.1113.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huijser P, Hennig W, Dijkhof R: Poly(dC-dA/dG-dT) repeats in the Drosophila genome: a key function for dosage compensation and position effects?. Chromosoma. 1987, 95: 209-215. 10.1007/BF00330352.
Article
CAS
Google Scholar
Pardue ML, Lowenhaupt K, Rich A, Nordheim A: (dC-dA)n·(dG-dT)n sequences have evolutionary conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J. 1987, 6: 1781-1789.
CAS
PubMed Central
PubMed
Google Scholar
Lowenhaupt K, Rich A, Pardue ML: Nonrandom distribution of long mono- and dinucleotide repeats in Drosophila chromosomes: correlation with dosage compensation, heterochromatin, and recombination. Mol Cell Biol. 1989, 9: 1173-1182.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schlötterer C, Harr B: Drosophila virilis has long and highly polymorphic microsatellites. Mol Biol Evol. 2000, 17: 1641-1646.
Article
PubMed
Google Scholar
Schug MD, Regulski EE, Pearce A, Smith SG: Isolation and characterization of dinucleotide repeat microsatellites in Drosophila ananassae. Genet Res. 2004, 83: 19-29. 10.1017/S0016672303006542.
Article
CAS
PubMed
Google Scholar
Marín I, Labrador M, Fontdevila A: The evolutionary history of Drosophila buzzatii. XXIII. High content of non-satellite repetitive DNA in D. buzzatii and in its sibling D. koepferae. Genome. 1992, 35: 967-974.
Article
PubMed
Google Scholar
Marín I, Fontdevila A: Evolutionary conservation and molecular characteristics of repetitive sequences of Drosophila koepferae. Heredity. 1996, 76: 355-366.
Article
PubMed
Google Scholar
Bachtrog D, Weiss S, Zangerl B, Brem G, Schlötterer C: Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol Biol Evol. 1999, 16: 602-610.
Article
CAS
PubMed
Google Scholar
Katti MV, Ranjekar PK, Gupta VS: Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol. 2001, 18: 1161-1167.
Article
CAS
PubMed
Google Scholar
Boeva V, Regnier M, Makeev M: Short fuzzy tandem repeats in genomic sequences, identification, and possible role in regulation of gene expression. Bioinformatics. 2006, 22: 676-684. 10.1093/bioinformatics/btk032.
Article
CAS
PubMed
Google Scholar
Lucchesi JC, Kelly WG, Panning B: Chromatin remodeling in dosage compensation. Annu Rev Genet. 2005, 39: 615-651. 10.1146/annurev.genet.39.073003.094210.
Article
CAS
PubMed
Google Scholar
Straub T, Becker PB: Dosage compensation: the beginning and end of generalization. Nat Rev Genet. 2007, 8: 47-57. 10.1038/nrg2013.
Article
CAS
PubMed
Google Scholar
Marín I, Franke A, Bashaw GJ, Baker BS: The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature. 1996, 383: 160-163. 10.1038/383160a0.
Article
PubMed
Google Scholar
Zelentsova ES, Vashakidze RP, Krayev AS, Evgen'ev MB: Dispersed repeats in Drosophila virilis : elements mobilized by interspecific hybidization. Chromosoma. 1986, 93: 469-476. 10.1007/BF00386786.
Article
CAS
Google Scholar
Tamura K, Subramanian S, Kumar S: Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol. 2004, 21: 36-44. 10.1093/molbev/msg236.
Article
CAS
PubMed
Google Scholar
Ramos-Onsins S, Segarra C, Rozas J, Aguade M: Molecular and chromosomal phylogeny in the obscura group of Drosophila inferred from sequences of the rp49 gene region. Mol Phylogenet Evol. 1998, 9: 33-41. 10.1006/mpev.1997.0438.
Article
CAS
PubMed
Google Scholar
Carvalho AB, Clark AG: Y chromosome of D. pseudoobscura is not homologous to the ancestral Drosophila Y. Science. 2005, 307: 108-110. 10.1126/science.1101675.
Article
CAS
PubMed
Google Scholar
Gilbert DG: DroSpeGe: rapid access database for new Drosophila species genomes. Nucleic Acids Res. 2007, 35: D480-D485. 10.1093/nar/gkl997.
Article
CAS
PubMed Central
PubMed
Google Scholar
Summaries for Drosophila species genomes. [http://insects.eugenes.org/species/news/genome-summaries]
Pascual M, Schug MD, Aquadro CF: High density of long dinucleotide microsatellites in Drosophila subobscura. Mol Biol Evol. 2000, 17: 1259-1267.
Article
CAS
PubMed
Google Scholar
Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, Markow TA: Rapid divergence of microsatellite abundance among species of Drosophila. Mol Biol Evol. 2003, 20: 1143-1157. 10.1093/molbev/msg137.
Article
CAS
PubMed
Google Scholar
Calabrese P, Durrett R: Dinucleotide repeats in the Drosophila and human genomes have complex, length-dependent mutation processes. Mol Biol Evol. 2003, 20: 715-725. 10.1093/molbev/msg084.
Article
CAS
PubMed
Google Scholar
Almeida P, Penha-Gonçalves C: Long perfect dinucleotide repeats are typical of vertebrates, show motif preferences and size convergence. Mol Biol Evol. 2004, 21: 1226-1233. 10.1093/molbev/msh108.
Article
CAS
PubMed
Google Scholar
Webster MT, Smith NG, Ellegren H: Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments. Proc Natl Acad Sci USA. 2002, 99: 8748-8753. 10.1073/pnas.122067599.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu G, NISC Comparative Sequencing Program, Zhao S, Bailey JA, Sahinalp SC, Alkan C, Tuzun E, Green ED, Eichler EE: Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome. Genome Res. 2003, 13: 358-368. 10.1101/gr.923303.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hellmann I, Prufer K, Ji H, Zody MC, Paabo S, Ptak SE: Why do human diversity levels vary at a megabase scale?. Genome Res. 2005, 15: 1222-1231. 10.1101/gr.3461105.
Article
CAS
PubMed Central
PubMed
Google Scholar
McNeil JA, Smith KP, Hall LL, Lawrence JB: Word frequency analysis reveals enrichment of dinucleotide repeats on the human X chromosome and [GATA]n in the X escape region. Genome Res. 2006, 16: 477-484. 10.1101/gr.4627606.
Article
CAS
PubMed Central
PubMed
Google Scholar
Comeron JM: What controls the length of noncoding DNA?. Curr Opin Genet Dev. 2001, 11: 652-659. 10.1016/S0959-437X(00)00249-5.
Article
CAS
PubMed
Google Scholar
Petrov DA: Evolution of genome size: new approaches to an old problem. Trends Genet. 2001, 17: 23-28. 10.1016/S0168-9525(00)02157-0.
Article
CAS
PubMed
Google Scholar
Hancock JM: Genome size and the accumulation of simple sequence repeats: implications of new data from genome sequencing projects. Genetica. 2002, 115: 93-103. 10.1023/A:1016028332006.
Article
CAS
PubMed
Google Scholar
Kidwell MG: Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002, 115: 49-63. 10.1023/A:1016072014259.
Article
CAS
PubMed
Google Scholar
Ellegren H: Microsatellites: simple sequences with complex evolution. Nature Rev Genet. 2004, 5: 435-445. 10.1038/nrg1348.
Article
CAS
PubMed
Google Scholar
Vinogradov AE: Evolution of genome size: multilevel selection, mutation bias or dynamical chaos?. Curr Opin Genet Dev. 2004, 14: 620-626. 10.1016/j.gde.2004.09.007.
Article
CAS
PubMed
Google Scholar
Gregory TR: Synergy between sequence and size in large-scale genomics. Nat Rev Genet. 2005, 6: 699-708. 10.1038/nrg1674.
Article
CAS
PubMed
Google Scholar
Bird CP, Stranger BE, Dermitzakis ET: Functional variation and evolution of non-coding DNA. Curr Opin Genet Dev. 2006, 16: 559-564. 10.1016/j.gde.2006.10.003.
Article
CAS
PubMed
Google Scholar
Hancock JM: Simple sequences and the expanding genome. BioEssays. 1996, 18: 421-425. 10.1002/bies.950180512.
Article
CAS
PubMed
Google Scholar
Moriyama EN, Petrov DA, Hartl DL: Genome size and intron size in Drosophila. Mol Biol Evol. 1998, 15: 770-773.
Article
CAS
PubMed
Google Scholar
Petrov DA, Hartl DL: High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol. 1998, 15: 293-302.
Article
CAS
PubMed
Google Scholar
Petrov DA, Lozovsakeya ER, Hartl DL: High intrinsic rate of DNA loss in Drosophila. Nature. 1996, 384: 346-349. 10.1038/384346a0.
Article
CAS
PubMed
Google Scholar
Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL: Evidence for DNA loss as a determinant of genome size. Science. 2000, 287: 1060-1062. 10.1126/science.287.5455.1060.
Article
CAS
PubMed
Google Scholar
Gregory TR: Insertion-deletion biases and the evolution of genome size. Gene. 2004, 324: 15-34. 10.1016/j.gene.2003.09.030.
Article
CAS
PubMed
Google Scholar
Parsons PA, Stanley SM: Domesticated and widespread species. The genetics and biology of Drosophila. Edited by: Ashburner M, Carson HL, Thompson JN Jr. 1981, London: Academic Press, 3a:
Google Scholar
Petrov DA, Hartl DL: Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci USA. 1999, 96: 1475-1479. 10.1073/pnas.96.4.1475.
Article
CAS
PubMed Central
PubMed
Google Scholar
Stephan W: Tandem-repetitive noncoding DNA: forms and forces. Mol Biol Evol. 1989, 6: 198-212.
CAS
PubMed
Google Scholar
Yu A, Zhao C, Fan Y, Jang W, Mungall AJ, Deloukas P, Olsen A, Doggett NA, Ghebranious N, Broman KW, Weber JL: Comparison of human genetic and sequence-based physical maps. Nature. 2001, 409: 951-953. 10.1038/35057185.
Article
CAS
PubMed
Google Scholar
Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ: Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004, 14: 528-38. 10.1101/gr.1970304.
Article
CAS
PubMed Central
PubMed
Google Scholar
Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, Schlipalius D, Mougel F, Emore C, Rueppell O, Sirviö A, Guzmán-Novoa E, Hunt G, Solignac M, Page RE: Exceptionally high levels of recombination across the honey bee genome. Genome Research. 2006, 16: 1339-1344. 10.1101/gr.5680406.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cirulli ET, Kliman RM, Noor MA: Fine-scale crossover rate heterogeneity in Drosophila pseudoobscura. J Mol Evol. 2007, 64: 129-135. 10.1007/s00239-006-0142-7.
Article
CAS
PubMed
Google Scholar
Lemeunier F, David JR, Tsacas L, Ashburner M: The melanogaster species group. The genetics and biology of Drosophila. Edited by: Ashburner M, Carson HL, Thompson JN Jr. 1986, London: Academic Press, 3e:
Google Scholar
Hsu TC: Chromosomal variation and evolution in the virilis group of Drosophila. Univ Tex Publ. 1952, 5204: 35-72.
Google Scholar
Gubenko IS, Evgen'ev MB: Cytological and linkage maps of Drosophila virilis chromosomes. Genetica. 1984, 65: 127-139. 10.1007/BF00135277.
Article
Google Scholar
True JR, Mercer JM, Laurie CC: Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics. 1996, 142: 507-523.
CAS
PubMed Central
PubMed
Google Scholar
Ortiz-Barrientos D, Chang AS, Noor MA: A recombinational portrait of the Drosophila pseudoobscura genome. Genet Res. 2006, 87: 23-31. 10.1017/S0016672306007932.
Article
CAS
PubMed
Google Scholar
Wilder J, Hollocher H: Mobile elements and the genesis of microsatellites in dipterans. Mol Biol Evol. 2001, 18: 384-392.
Article
CAS
PubMed
Google Scholar
Vicoso G, Charlesworth B: Evolution on the X chromosome: unusual patterns and processes. Nat Rev Genetics. 2006, 7: 645-653. 10.1038/nrg1914.
Article
CAS
Google Scholar
Baker BS, Gorman M, Marín I: Dosage compensation in Drosophila. Annu Rev Genet. 1994, 28: 491-521. 10.1146/annurev.ge.28.120194.002423.
Article
CAS
PubMed
Google Scholar
Alekseyenko AA, Larschan E, Lai WR, Park PJ, Kuroda MI: High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 2006, 20: 848-857. 10.1101/gad.1400206.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dahlsveen IK, Gilfillan GD, Shelest VI, Lamm R, Becker PB: Targeting determinants of dosage compensation in Drosophila. Plos Genetics. 2006, 2 (2): e5-10.1371/journal.pgen.0020005.
Article
PubMed Central
PubMed
Google Scholar
Gilfillan GD, Straub T, de Wit E, Greil F, Lamm R, van Steensel B, Becker PB: Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev. 2006, 20: 858-870. 10.1101/gad.1399406.
Article
CAS
PubMed Central
PubMed
Google Scholar
Legube G, McWeeney SK, Lercher MJ, Akhtar A: X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev. 2006, 20: 871-883. 10.1101/gad.377506.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gilfillan GD, König C, Dahlsveen IK, Prakoura N, Straub T, Lamm R, Fauth T, Becker PB: Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex. Nucleic Acids Res.
McDonel P, Jans J, Peterson BK, Meyer BJ: Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature. 2006, 444: 614-618. 10.1038/nature05338.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ercan S, Giresi PG, Whittle CM, Zhang X, Green RD, Lieb JD: X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nat Genet. 2007, 39: 403-408. 10.1038/ng1983.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bailey JA, Carrel L, Chakravarti A, Eichler EE: Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci USA. 2000, 97: 6634-6639. 10.1073/pnas.97.12.6634.
Article
CAS
PubMed Central
PubMed
Google Scholar
Carrel L, Park C, Tyekucheva S, Dunn J, Chiaromonte F, Makova KD: Genomic environment predicts expression patterns on the human inactive X chromosome. Plos Genetics. 2006, 2 (9): 1477-1486. 10.1371/journal.pgen.0020151.
Article
CAS
Google Scholar
Wang Z, Willard HF, Mukherjee S, Furey TS: Evidence of influence of genomic DNA sequence on human X chromosome inactivation. Plos Comput Biol. 2006, 2 (9): e113-10.1371/journal.pcbi.0020113.
Article
PubMed Central
PubMed
Google Scholar
Stenberg P, Pettersson F, Saura AO, Berglund A, Larsson J: Sequence signature analysis of chromosome identity in three Drosophila species. BMC Bioinformatics. 2005, 6: 158-10.1186/1471-2105-6-158.
Article
PubMed Central
PubMed
Google Scholar
Assembly/Alignment/Annotation of 12 related Drosophila species. [http://rana.lbl.gov/drosophila/]
Arnau V, Gallach M, Marin I: Fast comparison of DNA sequences by oligonucleotide profiling. BMC Research Notes.