TDR. [http://www.who.int/tdr]
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B: The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005, 309 (5733): 409-415. 10.1126/science.1112631.
CAS
PubMed
Google Scholar
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM: The genome of the African trypanosome Trypanosoma brucei. Science. 2005, 309 (5733): 416-422. 10.1126/science.1112642.
CAS
PubMed
Google Scholar
Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O'Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ: The genome of the kinetoplastid parasite, Leishmania major. Science. 2005, 309 (5733): 436-442. 10.1126/science.1112680.
PubMed Central
PubMed
Google Scholar
Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M, Kerhornou A, Ivens A, Fraser A, Rajandream MA, Carver T, Norbertczak H, Chillingworth T, Hance Z, Jagels K, Moule S, Ormond D, Rutter S, Squares R, Whitehead S, Rabbinowitsch E, Arrowsmith C, White B, Thurston S, Bringaud F, Baldauf SL, Faulconbridge A, Jeffares D, Depledge DP, Oyola SO, Hilley JD, Brito LO, Tosi LR, Barrell B, Cruz AK, Mottram JC, Smith DF, Berriman M: Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007, 39 (7): 839-847. 10.1038/ng2053.
CAS
PubMed Central
PubMed
Google Scholar
Andrade LO, Andrews NW: The Trypanosoma cruzi-host-cell interplay: location, invasion, retention. Nat Rev Microbiol. 2005, 3 (10): 819-823. 10.1038/nrmicro1249.
CAS
PubMed
Google Scholar
Matthews KR: The developmental cell biology of Trypanosoma brucei. J Cell Sci. 2005, 118 (Pt 2): 283-290. 10.1242/jcs.01649.
CAS
PubMed Central
PubMed
Google Scholar
Atwood JA, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL: The Trypanosoma cruzi proteome. Science. 2005, 309 (5733): 473-476. 10.1126/science.1110289.
CAS
PubMed
Google Scholar
Dell KR, Engel JN: Stage-specific regulation of protein phosphorylation in Leishmania major. Mol Biochem Parasitol. 1994, 64 (2): 283-292. 10.1016/0166-6851(94)00030-1.
CAS
PubMed
Google Scholar
Parsons M, Valentine M, Deans J, Schieven GL, Ledbetter JA: Distinct patterns of tyrosine phosphorylation during the life cycle of Trypanosoma brucei. Mol Biochem Parasitol. 1991, 45 (2): 241-248. 10.1016/0166-6851(91)90091-J.
CAS
PubMed
Google Scholar
Tonks NK: Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006, 7 (11): 833-846. 10.1038/nrm2039.
CAS
PubMed
Google Scholar
Tian Q, Wang J: Role of serine/threonine protein phosphatase in Alzheimer's disease. Neurosignals. 2002, 11 (5): 262-269. 10.1159/000067425.
CAS
PubMed
Google Scholar
Laporte J, Blondeau F, Buj-Bello A, Mandel JL: The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet. 2001, 17 (4): 221-228. 10.1016/S0168-9525(01)02245-4.
CAS
PubMed
Google Scholar
Zhang ZY: Protein tyrosine phosphatases: prospects for therapeutics. Curr Opin Chem Biol. 2001, 5 (4): 416-423. 10.1016/S1367-5931(00)00223-4.
CAS
PubMed
Google Scholar
Black DS, Marie-Cardine A, Schraven B, Bliska JB: The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell Microbiol. 2000, 2 (5): 401-414. 10.1046/j.1462-5822.2000.00061.x.
CAS
PubMed
Google Scholar
Lin SL, Le TX, Cowen DS: SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell Microbiol. 2003, 5 (4): 267-275. 10.1046/j.1462-5822.2003.t01-1-00274.x.
CAS
PubMed
Google Scholar
Singh R, Rao V, Shakila H, Gupta R, Khera A, Dhar N, Singh A, Koul A, Singh Y, Naseema M, Narayanan PR, Paramasivan CN, Ramanathan VD, Tyagi AK: Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol. 2003, 50 (3): 751-762. 10.1046/j.1365-2958.2003.03712.x.
CAS
PubMed
Google Scholar
Szoor B, Wilson J, McElhinney H, Tabernero L, Matthews KR: Protein tyrosine phosphatase TbPTP1: A molecular switch controlling life cycle differentiation in trypanosomes. J Cell Biol. 2006, 175 (2): 293-303. 10.1083/jcb.200605090.
CAS
PubMed Central
PubMed
Google Scholar
Nascimento M, Zhang WW, Ghosh A, Houston DR, Berghuis AM, Olivier M, Matlashewski G: Identification and characterization of a protein-tyrosine phosphatase in Leishmania: Involvement in virulence. J Biol Chem. 2006, 281 (47): 36257-36268. 10.1074/jbc.M606256200.
CAS
PubMed
Google Scholar
Orr GA, Werner C, Xu J, Bennett M, Weiss LM, Takvorkan P, Tanowitz HB, Wittner M: Identification of novel serine/threonine protein phosphatases in Trypanosoma cruzi: a potential role in control of cytokinesis and morphology. Infect Immun. 2000, 68 (3): 1350-1358. 10.1128/IAI.68.3.1350-1358.2000.
CAS
PubMed Central
PubMed
Google Scholar
Erondu NE, Donelson JE: Characterization of trypanosome protein phosphatase 1 and 2A catalytic subunits. Mol Biochem Parasitol. 1991, 49 (2): 303-314. 10.1016/0166-6851(91)90074-G.
CAS
PubMed
Google Scholar
Chaudhuri M: Cloning and characterization of a novel serine/threonine protein phosphatase type 5 from Trypanosoma brucei. Gene. 2001, 266 (1-2): 1-13. 10.1016/S0378-1119(01)00367-5.
CAS
PubMed
Google Scholar
Mills E, Price HP, Johner A, Emerson JE, Smith DF: Kinetoplastid PPEF phosphatases: dual acylated proteins expressed in the endomembrane system of Leishmania. Mol Biochem Parasitol. 2007, 152 (1): 22-34. 10.1016/j.molbiopara.2006.11.008.
CAS
PubMed Central
PubMed
Google Scholar
Alonso A, Rojas A, Godzik A, Mustelin T: The dual-specific protein tyrosine phosphatase family. Protein Phosphatases. Edited by: Springer-Verlag. 2004, 5: [http://springerlink.com/content/pua0916rwjwh/?p=e48631ac1b3b45358a2de7edfe7a436d&pi=14]
Google Scholar
Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP: Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol. 2001, 21 (21): 7117-7136. 10.1128/MCB.21.21.7117-7136.2001.
CAS
PubMed Central
PubMed
Google Scholar
Cohen PTW: Overview of protein serine/threonine phosphatases. Protein Phosphatases. Edited by: Hohmann S. 2004, Springer-Verlag, 5:
Google Scholar
Wolstencroft K, Lord P, Tabernero L, Brass A, Stevens R: Protein classification using ontology classification. Bioinformatics. 2006, 22 (14): e530-8. 10.1093/bioinformatics/btl208.
CAS
PubMed
Google Scholar
Parsons M, Worthey EA, Ward PN, Mottram JC: Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi. BMC Genomics. 2005, 6: 127-10.1186/1471-2164-6-127.
PubMed Central
PubMed
Google Scholar
Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T: Protein tyrosine phosphatases in the human genome. Cell. 2004, 117 (6): 699-711. 10.1016/j.cell.2004.05.018.
CAS
PubMed
Google Scholar
Wishart MJ, Dixon JE: Gathering STYX: phosphatase-like form predicts functions for unique protein-interaction domains. Trends Biochem Sci. 1998, 23 (8): 301-306. 10.1016/S0968-0004(98)01241-9.
CAS
PubMed
Google Scholar
Diamond RH, Cressman DE, Laz TM, Abrams CS, Taub R: PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol. 1994, 14 (6): 3752-3762.
CAS
PubMed Central
PubMed
Google Scholar
Cates CA, Michael RL, Stayrook KR, Harvey KA, Burke YD, Randall SK, Crowell PL, Crowell DN: Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Lett. 1996, 110 (1-2): 49-55. 10.1016/S0304-3835(96)04459-X.
CAS
PubMed
Google Scholar
Taylor GS, Liu Y, Baskerville C, Charbonneau H: The activity of Cdc14p, an oligomeric dual specificity protein phosphatase from Saccharomyces cerevisiae, is required for cell cycle progression. J Biol Chem. 1997, 272 (38): 24054-24063. 10.1074/jbc.272.38.24054.
CAS
PubMed
Google Scholar
Kaiser BK, Zimmerman ZA, Charbonneau H, Jackson PK: Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol Biol Cell. 2002, 13 (7): 2289-2300. 10.1091/mbc.01-11-0535.
CAS
PubMed Central
PubMed
Google Scholar
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997, 275 (5308): 1943-1947. 10.1126/science.275.5308.1943.
CAS
PubMed
Google Scholar
Zeng Q, Si X, Horstmann H, Xu Y, Hong W, Pallen CJ: Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. J Biol Chem. 2000, 275 (28): 21444-21452. 10.1074/jbc.M000453200.
CAS
PubMed
Google Scholar
Cuevas IC, Rohloff P, Sanchez DO, Docampo R: Characterization of farnesylated protein tyrosine phosphatase TcPRL-1 from Trypanosoma cruzi. Eukaryot Cell. 2005, 4 (9): 1550-1561. 10.1128/EC.4.9.1550-1561.2005.
CAS
PubMed Central
PubMed
Google Scholar
Shiu SH, Bleecker AB: Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A. 2001, 98 (19): 10763-10768. 10.1073/pnas.181141598.
CAS
PubMed Central
PubMed
Google Scholar
Korr D, Toschi L, Donner P, Pohlenz HD, Kreft B, Weiss B: LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal. 2006, 18 (6): 910-920. 10.1016/j.cellsig.2005.08.015.
CAS
PubMed
Google Scholar
Gao T, Furnari F, Newton AC: PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005, 18 (1): 13-24. 10.1016/j.molcel.2005.03.008.
CAS
PubMed
Google Scholar
Li W, Han M, Guan KL: The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev. 2000, 14 (8): 895-900.
CAS
PubMed Central
PubMed
Google Scholar
Selfors LM, Schutzman JL, Borland CZ, Stern MJ: soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. Proc Natl Acad Sci U S A. 1998, 95 (12): 6903-6908. 10.1073/pnas.95.12.6903.
CAS
PubMed Central
PubMed
Google Scholar
Forsthoefel NR, Cutler K, Port MD, Yamamoto T, Vernon DM: PIRLs: a novel class of plant intracellular leucine-rich repeat proteins. Plant Cell Physiol. 2005, 46 (6): 913-922. 10.1093/pcp/pci097.
CAS
PubMed
Google Scholar
Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR: Emerging roles of pseudokinases. Trends Cell Biol. 2006, 16 (9): 443-452. 10.1016/j.tcb.2006.07.003.
CAS
PubMed
Google Scholar
Bork P: Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally?. Proteins. 1993, 17 (4): 363-374. 10.1002/prot.340170405.
CAS
PubMed
Google Scholar
Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton AP, Tabernero L: MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J. 2007, 406 (1): 13-18. 10.1042/BJ20070670.
CAS
PubMed Central
PubMed
Google Scholar
Wishart MJ, Dixon JE: The archetype STYX/dead-phosphatase complexes with a spermatid mRNA-binding protein and is essential for normal sperm production. Proc Natl Acad Sci U S A. 2002, 99 (4): 2112-2117. 10.1073/pnas.251686198.
CAS
PubMed Central
PubMed
Google Scholar
Kim SA, Vacratsis PO, Firestein R, Cleary ML, Dixon JE: Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci U S A. 2003, 100 (8): 4492-4497. 10.1073/pnas.0431052100.
CAS
PubMed Central
PubMed
Google Scholar
Buist A, Zhang YL, Keng YF, Wu L, Zhang ZY, den Hertog J: Restoration of potent protein-tyrosine phosphatase activity into the membrane-distal domain of receptor protein-tyrosine phosphatase alpha. Biochemistry. 1999, 38 (3): 914-922. 10.1021/bi981936b.
CAS
PubMed
Google Scholar
Gupta R, Huang Y, Kieber J, Luan S: Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. Plant J. 1998, 16 (5): 581-589. 10.1046/j.1365-313x.1998.00327.x.
CAS
PubMed
Google Scholar
Ulm R, Ichimura K, Mizoguchi T, Peck SC, Zhu T, Wang X, Shinozaki K, Paszkowski J: Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. Embo J. 2002, 21 (23): 6483-6493. 10.1093/emboj/cdf646.
CAS
PubMed Central
PubMed
Google Scholar
Martin H, Flandez M, Nombela C, Molina M: Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol Microbiol. 2005, 58 (1): 6-16. 10.1111/j.1365-2958.2005.04822.x.
CAS
PubMed
Google Scholar
Nordle AK, Rios P, Gaulton A, Pulido R, Attwood TK, Tabernero L: Functional assignment of MAPK phosphatase domains. Proteins. 2007, 69 (1): 19-31. 10.1002/prot.21477.
CAS
PubMed
Google Scholar
Pulido R, Zuniga A, Ullrich A: PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. Embo J. 1998, 17 (24): 7337-7350. 10.1093/emboj/17.24.7337.
CAS
PubMed Central
PubMed
Google Scholar
Tanoue T, Adachi M, Moriguchi T, Nishida E: A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol. 2000, 2 (2): 110-116. 10.1038/35000065.
CAS
PubMed
Google Scholar
Ellis J, Sarkar M, Hendriks E, Matthews K: A novel ERK-like, CRK-like protein kinase that modulates growth in Trypanosoma brucei via an autoregulatory C-terminal extension. Mol Microbiol. 2004, 53 (5): 1487-1499. 10.1111/j.1365-2958.2004.04218.x.
CAS
PubMed
Google Scholar
Wiese M: Leishmania MAP kinases - Familiar proteins in an unusual context. Int J Parasitol. 2007, 37 (10): 1053-1062. 10.1016/j.ijpara.2007.04.008.
CAS
PubMed
Google Scholar
Keyse SM, Ginsburg M: Amino acid sequence similarity between CL100, a dual-specificity MAP kinase phosphatase and cdc25. Trends Biochem Sci. 1993, 18 (10): 377-378. 10.1016/0968-0004(93)90092-2.
CAS
PubMed
Google Scholar
Boutros R, Dozier C, Ducommun B: The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol. 2006, 18 (2): 185-191. 10.1016/j.ceb.2006.02.003.
CAS
PubMed
Google Scholar
Hammarton TC: Cell cycle regulation in Trypanosoma brucei. Mol Biochem Parasitol. 2007, 153 (1): 1-8. 10.1016/j.molbiopara.2007.01.017.
CAS
PubMed Central
PubMed
Google Scholar
Bordo D, Bork P: The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep. 2002, 3 (8): 741-746. 10.1093/embo-reports/kvf150.
CAS
PubMed Central
PubMed
Google Scholar
Mukhopadhyay R, Rosen BP: Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect. 2002, 110 Suppl 5: 745-748.
PubMed
Google Scholar
Zhou Y, Messier N, Ouellette M, Rosen BP, Mukhopadhyay R: Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem. 2004, 279 (36): 37445-37451. 10.1074/jbc.M404383200.
CAS
PubMed
Google Scholar
Zhou Y, Bhattacharjee H, Mukhopadhyay R: Bifunctional role of the leishmanial antimonate reductase LmACR2 as a protein tyrosine phosphatase. Mol Biochem Parasitol. 2006, 148 (2): 161-168. 10.1016/j.molbiopara.2006.03.009.
CAS
PubMed
Google Scholar
Boudolf V, Inze D, De Veylder L: What if higher plants lack a CDC25 phosphatase?. Trends Plant Sci. 2006, 11 (10): 474-479. 10.1016/j.tplants.2006.08.009.
CAS
PubMed
Google Scholar
Mottram JC, Smith G: A family of trypanosome cdc2-related protein kinases. Gene. 1995, 162 (1): 147-152. 10.1016/0378-1119(95)00350-F.
CAS
PubMed
Google Scholar
Hassan P, Fergusson D, Grant KM, Mottram JC: The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol Biochem Parasitol. 2001, 113 (2): 189-198. 10.1016/S0166-6851(01)00220-1.
CAS
PubMed
Google Scholar
Hammarton TC, Clark J, Douglas F, Boshart M, Mottram JC: Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. J Biol Chem. 2003, 278 (25): 22877-22886. 10.1074/jbc.M300813200.
CAS
PubMed
Google Scholar
Tu X, Wang CC: The involvement of two cdc2-related kinases (CRKs) in Trypanosoma brucei cell cycle regulation and the distinctive stage-specific phenotypes caused by CRK3 depletion. J Biol Chem. 2004, 279 (19): 20519-20528. 10.1074/jbc.M312862200.
CAS
PubMed
Google Scholar
Bennett MS, Guan Z, Laurberg M, Su XD: Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Proc Natl Acad Sci U S A. 2001, 98 (24): 13577-13582. 10.1073/pnas.241397198.
CAS
PubMed Central
PubMed
Google Scholar
Liu J, Gladysheva TB, Lee L, Rosen BP: Identification of an essential cysteinyl residue in the ArsC arsenate reductase of plasmid R773. Biochemistry. 1995, 34 (41): 13472-13476. 10.1021/bi00041a026.
CAS
PubMed
Google Scholar
Messens J, Hayburn G, Desmyter A, Laus G, Wyns L: The essential catalytic redox couple in arsenate reductase from Staphylococcus aureus. Biochemistry. 1999, 38 (51): 16857-16865. 10.1021/bi9911841.
CAS
PubMed
Google Scholar
Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafon A, Latge JP, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O'Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, Rodriguez de Cordoba S, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, Vazquez de Aldana CR, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW: Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005, 438 (7071): 1151-1156. 10.1038/nature04332.
CAS
PubMed
Google Scholar
Bollen M: Combinatorial control of protein phosphatase-1. Trends Biochem Sci. 2001, 26 (7): 426-431. 10.1016/S0968-0004(01)01836-9.
CAS
PubMed
Google Scholar
Plowman GD, Sudarsanam S, Bingham J, Whyte D, Hunter T: The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc Natl Acad Sci U S A. 1999, 96 (24): 13603-13610. 10.1073/pnas.96.24.13603.
CAS
PubMed Central
PubMed
Google Scholar
Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, Gribskov M: The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol. 2002, 129 (2): 908-925. 10.1104/pp.004002.
CAS
PubMed Central
PubMed
Google Scholar
Dombradi V, Axton JM, Brewis ND, da Cruz e Silva EF, Alphey L, Cohen PT: Drosophila contains three genes that encode distinct isoforms of protein phosphatase 1. Eur J Biochem. 1990, 194 (3): 739-745. 10.1111/j.1432-1033.1990.tb19464.x.
CAS
PubMed
Google Scholar
Alessi DR, Gomez N, Moorhead G, Lewis T, Keyse SM, Cohen P: Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol. 1995, 5 (3): 283-295. 10.1016/S0960-9822(95)00059-5.
CAS
PubMed
Google Scholar
Helps NR, Brewis ND, Lineruth K, Davis T, Kaiser K, Cohen PT: Protein phosphatase 4 is an essential enzyme required for organisation of microtubules at centrosomes in Drosophila embryos. J Cell Sci. 1998, 111 ( Pt 10): 1331-1340.
CAS
Google Scholar
Gotz J, Probst A, Ehler E, Hemmings B, Kues W: Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci U S A. 1998, 95 (21): 12370-12375. 10.1073/pnas.95.21.12370.
CAS
PubMed Central
PubMed
Google Scholar
Suzuki Y, Lanner C, Kim JH, Vilardo PG, Zhang H, Yang J, Cooper LD, Steele M, Kennedy A, Bock CB, Scrimgeour A, Lawrence JC, DePaoli-Roach AA: Insulin control of glycogen metabolism in knockout mice lacking the muscle-specific protein phosphatase PP1G/RGL. Mol Cell Biol. 2001, 21 (8): 2683-2694. 10.1128/MCB.21.8.2683-2694.2001.
CAS
PubMed Central
PubMed
Google Scholar
Barton GJ, Cohen PT, Barford D: Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases. Eur J Biochem. 1994, 220 (1): 225-237. 10.1111/j.1432-1033.1994.tb18618.x.
CAS
PubMed
Google Scholar
Ceulemans H, Bollen M: Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev. 2004, 84 (1): 1-39. 10.1152/physrev.00013.2003.
CAS
PubMed
Google Scholar
Li Z, Tu X, Wang CC: Okadaic acid overcomes the blocked cell cycle caused by depleting Cdc2-related kinases in Trypanosoma brucei. Exp Cell Res. 2006, 312 (18): 3504-3516. 10.1016/j.yexcr.2006.07.022.
CAS
PubMed
Google Scholar
Das A, Gale M, Carter V, Parsons M: The protein phosphatase inhibitor okadaic acid induces defects in cytokinesis and organellar genome segregation in Trypanosoma brucei. J Cell Sci. 1994, 107 ( Pt 12): 3477-3483.
CAS
Google Scholar
Jackson AP: Tandem gene arrays in Trypanosoma brucei: comparative phylogenomic analysis of duplicate sequence variation. BMC Evol Biol. 2007, 7: 54-10.1186/1471-2148-7-54.
PubMed Central
PubMed
Google Scholar
Gonzalez J, Cornejo A, Santos MR, Cordero EM, Gutierrez B, Porcile P, Mortara RA, Sagua H, Da Silveira JF, Araya JE: A novel protein phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite Trypanosoma cruzi. Biochem J. 2003, 374 (Pt 3): 647-656. 10.1042/BJ20030215.
CAS
PubMed Central
PubMed
Google Scholar
Andersen JF, Ribeiro JM: A secreted salivary inositol polyphosphate 5-phosphatase from a blood-feeding insect: allosteric activation by soluble phosphoinositides and phosphatidylserine. Biochemistry. 2006, 45 (17): 5450-5457. 10.1021/bi052444j.
CAS
PubMed
Google Scholar
Andreeva AV, Kutuzov MA: Widespread presence of "bacterial-like" PPP phosphatases in eukaryotes. BMC Evol Biol. 2004, 4: 47-10.1186/1471-2148-4-47.
PubMed Central
PubMed
Google Scholar
Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J: Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev. 2004, 18 (4): 448-460. 10.1101/gad.1174204.
CAS
PubMed Central
PubMed
Google Scholar
Das AK, Helps NR, Cohen PT, Barford D: Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. Embo J. 1996, 15 (24): 6798-6809.
CAS
PubMed Central
PubMed
Google Scholar
Bork P, Brown NP, Hegyi H, Schultz J: The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci. 1996, 5 (7): 1421-1425.
CAS
PubMed Central
PubMed
Google Scholar
Takekawa M, Maeda T, Saito H: Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. Embo J. 1998, 17 (16): 4744-4752. 10.1093/emboj/17.16.4744.
CAS
PubMed Central
PubMed
Google Scholar
Hanada M, Kobayashi T, Ohnishi M, Ikeda S, Wang H, Katsura K, Yanagawa Y, Hiraga A, Kanamaru R, Tamura S: Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells. FEBS Lett. 1998, 437 (3): 172-176. 10.1016/S0014-5793(98)01229-0.
CAS
PubMed
Google Scholar
Maeda T, Wurgler-Murphy SM, Saito H: A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994, 369 (6477): 242-245. 10.1038/369242a0.
CAS
PubMed
Google Scholar
Shiozaki K, Russell P: Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast. Embo J. 1995, 14 (3): 492-502.
CAS
PubMed Central
PubMed
Google Scholar
Rodriguez PL: Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol Biol. 1998, 38 (6): 919-927. 10.1023/A:1006054607850.
CAS
PubMed
Google Scholar
Cheng A, Kaldis P, Solomon MJ: Dephosphorylation of human cyclin-dependent kinases by protein phosphatase type 2C alpha and beta 2 isoforms. J Biol Chem. 2000, 275 (44): 34744-34749. 10.1074/jbc.M006210200.
CAS
PubMed
Google Scholar
Ofek P, Ben-Meir D, Lavi S: An inducible system to study the growth arrest properties of protein phosphatase 2C. Methods Enzymol. 2003, 366: 338-347.
CAS
PubMed
Google Scholar
Hishiya A, Ohnishi M, Tamura S, Nakamura F: Protein phosphatase 2C inactivates F-actin binding of human platelet moesin. J Biol Chem. 1999, 274 (38): 26705-26712. 10.1074/jbc.274.38.26705.
CAS
PubMed
Google Scholar
Strovel ET, Wu D, Sussman DJ: Protein phosphatase 2Calpha dephosphorylates axin and activates LEF-1-dependent transcription. J Biol Chem. 2000, 275 (4): 2399-2403. 10.1074/jbc.275.4.2399.
CAS
PubMed
Google Scholar
Burns JM, Parsons M, Rosman DE, Reed SG: Molecular cloning and characterization of a 42-kDa protein phosphatase of Leishmania chagasi. J Biol Chem. 1993, 268 (23): 17155-17161.
CAS
PubMed
Google Scholar
Archambault J, Pan G, Dahmus GK, Cartier M, Marshall N, Zhang S, Dahmus ME, Greenblatt J: FCP1, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase IIO. J Biol Chem. 1998, 273 (42): 27593-27601. 10.1074/jbc.273.42.27593.
CAS
PubMed
Google Scholar
Kobor MS, Archambault J, Lester W, Holstege FC, Gileadi O, Jansma DB, Jennings EG, Kouyoumdjian F, Davidson AR, Young RA, Greenblatt J: An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell. 1999, 4 (1): 55-62. 10.1016/S1097-2765(00)80187-2.
CAS
PubMed
Google Scholar
Chapman AB, Agabian N: Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats. J Biol Chem. 1994, 269 (7): 4754-4760.
CAS
PubMed
Google Scholar
Dasgupta A, Sharma S, Das A, Sarkar D, Majumder H: Carboxy terminal domain of the largest subunit of RNA polymerase II of Leishmania donovani has an unusually low number of phosphorylation sites. Med Sci Monit. 2002, 8 (5): CR341-50.
CAS
PubMed
Google Scholar
Garcia A, Cayla X, Barik S, Langsley G: A family of PP2 phosphatases in Plasmodium falciparum and parasitic protozoa. Parasitol Today. 1999, 15 (3): 90-92. 10.1016/S0169-4758(99)01393-9.
CAS
PubMed
Google Scholar
Cherkasov A, Lee SJ, Nandan D, Reiner NE: Large-scale survey for potentially targetable indels in bacterial and protozoan proteins. Proteins. 2006, 62 (2): 371-380. 10.1002/prot.20631.
CAS
PubMed
Google Scholar
GeneDB homepage. [http://www.genedb.org/]
Horrocks I, Patel-Schneider PF, van Harmelen F: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics. 2003, 1 (1): 7-26.
Google Scholar
Racer Systems GmbH & Co. KG: RacerPro. [http://www.racer-systems.com/]1.9.0
Bechhofer S, Horrocks I, Turi D: The OWL instance store: System description. Proc of the 20th Int Conf on Automated Deduction. Edited by: Nieuwenhuis R. 2005, Springer, 177-181.
Google Scholar
Zdobnov EM, Apweiler R: InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001, 17 (9): 847-848. 10.1093/bioinformatics/17.9.847.
CAS
PubMed
Google Scholar
Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM: InterPro--an integrated documentation resource for protein families, domains and functional sites. Bioinformatics. 2000, 16 (12): 1145-1150. 10.1093/bioinformatics/16.12.1145.
CAS
PubMed
Google Scholar
Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P: SMART 4.0: towards genomic data integration. Nucleic Acids Res. 2004, 32 (Database issue): D142-4. 10.1093/nar/gkh088.
CAS
PubMed Central
PubMed
Google Scholar
Bairoch A, Apweiler R: The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res. 1996, 24 (1): 21-25. 10.1093/nar/24.1.21.
CAS
PubMed Central
PubMed
Google Scholar
Attwood TK: The PRINTS database: a resource for identification of protein families. Brief Bioinform. 2002, 3 (3): 252-263. 10.1093/bib/3.3.252.
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25 (24): 4876-4882. 10.1093/nar/25.24.4876.
CAS
PubMed Central
PubMed
Google Scholar
Hall T: BioEdit. [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]7.0.5
Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P, Pavletich NP: Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell. 1999, 99 (3): 323-334. 10.1016/S0092-8674(00)81663-3.
CAS
PubMed
Google Scholar
Begley MJ, Taylor GS, Kim SA, Veine DM, Dixon JE, Stuckey JA: Crystal structure of a phosphoinositide phosphatase, MTMR2: insights into myotubular myopathy and Charcot-Marie-Tooth syndrome. Mol Cell. 2003, 12 (6): 1391-1402. 10.1016/S1097-2765(03)00486-6.
CAS
PubMed
Google Scholar
Kamenski T, Heilmeier S, Meinhart A, Cramer P: Structure and mechanism of RNA polymerase II CTD phosphatases. Mol Cell. 2004, 15 (3): 399-407. 10.1016/j.molcel.2004.06.035.
CAS
PubMed
Google Scholar
Altschul SF GW Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
CAS
PubMed
Google Scholar
Huxley-Jones J, Robertson DL, Boot-Handford RP: On the origins of the extracellular matrix in vertebrates. Matrix Biol. 2007, 26 (1): 2-11. 10.1016/j.matbio.2006.09.008.
CAS
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001, 17 (8): 754-755. 10.1093/bioinformatics/17.8.754.
CAS
PubMed
Google Scholar
Felsenstein J: PHYLIP. [http://evolution.genetics.washington.edu/phylip.html]
Strimmer K, von Haeseler A: Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol and Evolution. 1996, 13: 964-969.
CAS
Google Scholar
Stern A, Privman E, Rasis M, Lavi S, Pupko T: Evolution of the metazoan protein phosphatase 2C superfamily. J Mol Evol. 2007, 64 (1): 61-70. 10.1007/s00239-006-0033-y.
CAS
PubMed
Google Scholar
Laporte J, Blondeau F, Buj-Bello A, Tentler D, Kretz C, Dahl N, Mandel JL: Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human. Hum Mol Genet. 1998, 7 (11): 1703-1712. 10.1093/hmg/7.11.1703.
CAS
PubMed
Google Scholar
Sakumoto N, Mukai Y, Uchida K, Kouchi T, Kuwajima J, Nakagawa Y, Sugioka S, Yamamoto E, Furuyama T, Mizubuchi H, Ohsugi N, Sakuno T, Kikuchi K, Matsuoka I, Ogawa N, Kaneko Y, Harashima S: A series of protein phosphatase gene disruptants in Saccharomyces cerevisiae. Yeast. 1999, 15 (15): 1669-1679. 10.1002/(SICI)1097-0061(199911)15:15<1669::AID-YEA480>3.0.CO;2-6.
CAS
PubMed
Google Scholar
Farkas I, Dombradi V, Miskei M, Szabados L, Koncz C: Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci. 2007, 12 (4): 169-176. 10.1016/j.tplants.2007.03.003.
CAS
PubMed
Google Scholar
Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis Comparison Tool. Bioinformatics. 2005, 21 (16): 3422-3423. 10.1093/bioinformatics/bti553.
CAS
PubMed
Google Scholar