McCord JM, Fridovich I: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969, 244: 6049-6055.
CAS
PubMed
Google Scholar
Meier B, Barra D, Bossa F, Calabrese L, Rotilio G: Synthesis of either Fe- or Mn-superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplied. J Biol Chem. 1982, 257: 13977-13980.
CAS
PubMed
Google Scholar
Amano A, Shizukuishi S, Tamagawa H, Iwakura K, Tsunasawa S, Tsunemitsu A: Characterization of superoxide dismutases purified from either anaerobically maintained or aerated Bacteroides gingivalis. J Bacteriol. 1990, 172: 1457-1463.
CAS
PubMed Central
PubMed
Google Scholar
Sugio SB, Hiraoka Y, Yamakura F: Crystal structure of cambialistic superoxide dismutase from Porphyromonas gingivalis. Eur J Biochem. 2000, 267: 3487-3495. 10.1046/j.1432-1327.2000.01373.x.
Article
CAS
PubMed
Google Scholar
Hiraoka BY, Yamakura F, Sugio S, Nakayama K: A change of the metal-specific activity of a cambialistic superoxide dismutase from Porphyromonas gingivalis by a double mutation of Gln-70 to Gly and Ala-142 to Gln. Biochem J. 2000, 345: 345-350. 10.1042/0264-6021:3450345.
Article
CAS
PubMed Central
PubMed
Google Scholar
Barghoorn ES: The oldest fossils. Sci Am. 1971, 224: 30-42.
Article
CAS
PubMed
Google Scholar
Blankenship RE: Molecular evidence for the evolution of photosynthesis. Trends Plant Sci. 2001, 6: 4-6. 10.1016/S1360-1385(00)01831-8.
Article
CAS
PubMed
Google Scholar
Atzenhofer W, Regelsberger G, Jacob U, Peschek G, Furtmuller P, Huber R, Obinger C: The 2.0A resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese superoxide dismutase. J Mol Biol. 2002, 321: 479-489. 10.1016/S0022-2836(02)00624-1.
Article
CAS
PubMed
Google Scholar
Herbert SK, Samson G, Fork DC, Laudenbach DE: Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity. Proc Natl Acad Sci USA. 1992, 89: 8716-8720. 10.1073/pnas.89.18.8716.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kim JH, Suh KH: Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Arch Microbiol. 2005, 183: 218-223. 10.1007/s00203-005-0766-9.
Article
CAS
PubMed
Google Scholar
Kalib A: Studies on Cyanobacterial tolerance to dessication. Ph.D Dissertation, National Facility for Marine Cyanobacteria, India. 2002
Google Scholar
Uma Maheshwari R, Kathirvel E, Anand N: Desiccation-induced Changes in Antioxidant Enzymes, Fatty Acids, and Amino Acids in the Cyanobacterium Tolypothrix scytonemoides. World J Microbiol Biotechnol. 2007, 23: 251-257. 10.1007/s11274-006-9221-6.
Article
Google Scholar
Thomas DJ, Avenson TJ, Thomas JB, Herbert SK: A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but not sensitized to oxidative stress induced with norflurazon. Plant Physiology. 1998, 116: 1593-1602. 10.1104/pp.116.4.1593.
Article
CAS
PubMed Central
PubMed
Google Scholar
Saha SK, Uma L, Subramanian G: Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol Ecol. 2003, 45: 263-272. 10.1016/S0168-6496(03)00162-4.
Article
Google Scholar
Wintjens R, Noel C, May AC, Gerbod D, Dufernez F, Capron M, Viscogliosi E, Rooman M: Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J Biol Chem. 2004, 279: 9248-9254. 10.1074/jbc.M312329200.
Article
CAS
PubMed
Google Scholar
Parker WM, Blake CFC: Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEB. 1988, 229: 377-382. 10.1016/0014-5793(88)81160-8.
Article
CAS
Google Scholar
Jackson SMJ, Cooper JB: An analysis of structural similarity in the iron and manganese superoxide dismutases based on known structures and sequences. BioMetals. 1998, 11: 159-173. 10.1023/A:1009238214394.
Article
CAS
PubMed
Google Scholar
Edwards RA, Baker HM, Whittaker MM, Jameson GB, Baker EN: Crystal structure of Esherichia coli Manganese superoxide dismutase at 2.1- angstrom resolution. J Biol Inorg Chem. 1998, 3: 161-171. 10.1007/s007750050217.
Article
CAS
Google Scholar
Borgstahl GEO, Parge HE, Hickey MJ, Beyer WF, Hallewell RA, Tainer JA: The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992, 71: 107-118. 10.1016/0092-8674(92)90270-M.
Article
CAS
PubMed
Google Scholar
Vance CK, Miller AF: A simple proposal that can explain the inactivity of metal-substituted superoxide dismutases. J Am Chem Soc. 120: 461-467. 10.1021/ja972060j.
Whittaker MM, Whittaker JW: Recombinant superoxide dismutase from a hyperthermophilic archaeon, Pyrobaculum aerophilum. J Biol Inorg Chem. 2000, 5: 402-408.
CAS
PubMed
Google Scholar
Regelsberger G, Atzenhofer W, Ruker F, Peschek GA, Jakopitsch C, Paumann Furtmuller PG, Obinger C: Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120. J Biol Chem. 2002, 277: 43615-43622. 10.1074/jbc.M207691200.
Article
CAS
PubMed
Google Scholar
Wolfe F, Schofield O, Falkowski P: The role and evolution of superoxide dismutase in algae. J Phycol. 2005, 2-38.
Google Scholar
Pesce A, Battistoni A, Stroppolo ME, Polizio F, Nardini M, Kroll JS, Langford PR, O'Neill P, Sette M, Desideri A, Bolognesi M: Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodC virulence gene. J Mol Biol. 2000, 302: 465-478. 10.1006/jmbi.2000.4074.
Article
CAS
PubMed
Google Scholar
Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J: The genome of a motile marine Synechococcus. Nature. 2003, 424: 1037-1042. 10.1038/nature01943.
Article
CAS
PubMed
Google Scholar
Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO: A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J. 1996, 318: 889-896.
Article
CAS
PubMed Central
PubMed
Google Scholar
Youn HD, Youn H, Lee JW, Yim YI, Lee JK, Hah YC, Kang SO: Unique isozymes of superoxide dismutase in Streptomyces griseus. Arch Biochem Biophys. 1996, 334: 341-348. 10.1006/abbi.1996.0463.
Article
CAS
PubMed
Google Scholar
Garcia-Fernandez J, de Marsac N, Diez J: Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Reviews. 2004, 68: 630-638. 10.1128/MMBR.68.4.630-638.2004.
Article
CAS
Google Scholar
Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED: Nickel superoxide dismutase structure and mechanism. Biochemistry. 2004, 43: 8038-8047. 10.1021/bi0496081.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST : A new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ouali M, King RD: Cascaded multiple classifiers for secondary structure prediction. Protein Sci. 2000, 9 (6): 1162-1176.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cuff JA, Barton GJ: Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000, 40: 502-511. 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q.
Article
CAS
PubMed
Google Scholar
Hall TA: BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999, 41: 95-98.
CAS
Google Scholar
Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999, 292: 195-202. 10.1006/jmbi.1999.3091.
Article
CAS
PubMed
Google Scholar
WebLab ViewerLite software. [http://www.accelrys.com/]