Charlesworth B, Sniegowski P, Stephan W: The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994, 371: 215-220. 10.1038/371215a0.
Article
PubMed
Google Scholar
Lander E, Linton LM, Birren B, al. : Initial sequencing and analysis of the human genome. Nature. 2001, 409: 860-921. 10.1038/35057062.
Article
PubMed
Google Scholar
Li B, Xia Q, Lu C, Zhou Z, Xiang Z: Analysis on frequency and density of microsatellites in coding sequences of several eukaryotic genomes. Genomics Proteomics Bioinformatics. 2004, 2 (1): 24-31.
PubMed
Google Scholar
Struhl K: Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A. 1985, 82 (24): 8419-8423. 10.1073/pnas.82.24.8419.
Article
PubMed
PubMed Central
Google Scholar
Uhlemann AC, Szlezak NA, Vonthein R, Tomiuk J, Emmer SA, Lell B, Kremsner PG, Kun JF: DNA phasing by TA dinucleotide microsatellite length determines in vitro and in vivo expression of the gp91phox subunit of NADPH oxidase and mediates protection against severe malaria. J Infect Dis. 2004, 189 (12): 2227-2234. 10.1086/421242.
Article
PubMed
Google Scholar
Curi RA, Oliveira HN, Silveira AC, Lopes CR: Effects of polymorphic microsatellites in the regulatory region of IGF1 and GHR on growth and carcass traits in beef cattle. Anim Genet. 2005, 36 (1): 58-62. 10.1111/j.1365-2052.2004.01226.x.
Article
PubMed
Google Scholar
Contente A, Dittmer A, Koch MC, Roth J, Dobbelstein M: A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat Genet. 2002, 30 (3): 315-320. 10.1038/ng836.
Article
PubMed
Google Scholar
Borrmann L, Seebeck B, Rogalla P, Bullerdiek J: Human HMGA2 promoter is coregulated by a polymorphic dinucleotide (TC)-repeat. Oncogene. 2003, 22 (5): 756-760. 10.1038/sj.onc.1206073.
Article
PubMed
Google Scholar
Hammock EA, Young LJ: Microsatellite instability generates diversity in brain and sociobehavioral traits. Science. 2005, 308 (5728): 1630-1634. 10.1126/science.1111427.
Article
PubMed
Google Scholar
Hammock EA, Young LJ: Functional microsatellite polymorphism associated with divergent social structure in vole species. Mol Biol Evol. 2004, 21 (6): 1057-1063. 10.1093/molbev/msh104.
Article
PubMed
Google Scholar
Schultes NP, Szostak JW: A poly(dA.dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae. Mol Cell Biol. 1991, 11 (1): 322-328.
Article
PubMed
PubMed Central
Google Scholar
Gendrel CG, Boulet A, Dutreix M: (CA/GT)(n) microsatellites affect homologous recombination during yeast meiosis. Genes Dev. 2000, 14 (10): 1261-1268.
PubMed
PubMed Central
Google Scholar
Kirkpatrick DT, Wang YH, Dominska M, Griffith JD, Petes TD: Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol Cell Biol. 1999, 19 (11): 7661-7671.
Article
PubMed
PubMed Central
Google Scholar
Treco D, Arnheim N: The evolutionarily conserved repetitive sequence d(TG.AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol Cell Biol. 1986, 6 (11): 3934-3947.
Article
PubMed
PubMed Central
Google Scholar
Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J: A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996, 380 (6570): 152-154. 10.1038/380152a0.
Article
PubMed
Google Scholar
Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, Mizoguchi Y, Hirano T, Itoh T, Watanabe T, Reed KM, Snelling WM, Kappes SM, Beattie CW, Bennett GL, Sugimoto Y: A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res. 2004, 14 (10A): 1987-1998. 10.1101/gr.2741704.
Article
PubMed
PubMed Central
Google Scholar
Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D, Husain Z, Dredge R, Daly MJ, Ingalls KA, O'Connor TJ: A comprehensive genetic map of the mouse genome. Nature. 1996, 380 (6570): 149-152. 10.1038/380149a0.
Article
PubMed
Google Scholar
Sibov ST, de Souza CL, Garcia AA, Silva AR, Garcia AF, Mangolin CA, Benchimol LL, de Souza AP: Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture. Hereditas. 2003, 139 (2): 107-115. 10.1111/j.1601-5223.2003.01667.x.
Article
PubMed
Google Scholar
Goris A, Sawcer S, Vandenbroeck K, Carton H, Billiau A, Setakis E, Compston A, Dubois B: New candidate loci for multiple sclerosis susceptibility revealed by a whole genome association screen in a Belgian population. J Neuroimmunol. 2003, 143 (1-2): 65-69. 10.1016/j.jneuroim.2003.08.013.
Article
PubMed
Google Scholar
Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D: Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid--location of root-knot nematode resistance genes. Theor Appl Genet. 2004, 109 (4): 827-838. 10.1007/s00122-004-1694-9.
Article
PubMed
Google Scholar
Tamaki K, Jeffreys AJ: Human tandem repeat sequences in forensic DNA typing. Leg Med (Tokyo). 2005, 7 (4): 244-250.
Article
Google Scholar
Webster MS, Reichart L: Use of microsatellites for parentage and kinship analyses in animals. Methods Enzymol. 2005, 395: 222-238.
Article
PubMed
Google Scholar
Schlotterer C, Pemberton J: The use of microsatellites for genetic analysis of natural populations. Exs. 1994, 69: 203-214.
PubMed
Google Scholar
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW: Genetic structure of human populations. Science. 2002, 298 (5602): 2381-2385. 10.1126/science.1078311.
Article
PubMed
Google Scholar
Hayano A, Yoshioka M, Tanaka M, Amano M: Population differentiation in the Pacific white-sided dolphin Lagenorhynchus obliquidens inferred from mitochondrial DNA and microsatellite analyses. Zoolog Sci. 2004, 21 (9): 989-999. 10.2108/zsj.21.989.
Article
PubMed
Google Scholar
Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL: High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994, 368 (6470): 455-457. 10.1038/368455a0.
Article
PubMed
Google Scholar
Meyer E, Wiegand P, Rand SP, Kuhlmann D, Brack M, Brinkmann B: Microsatellite polymorphisms reveal phylogenetic relationships in primates. J Mol Evol. 1995, 41 (1): 10-14. 10.1007/BF00174036.
Article
PubMed
Google Scholar
Schlotterer C: Genealogical inference of closely related species based on microsatellites. Genet Res. 2001, 78 (3): 209-212.
Article
PubMed
Google Scholar
Buschiazzo E, Gemmell NJ: The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays. 2006, 28 (10): 1040-1050. 10.1002/bies.20470.
Article
PubMed
Google Scholar
Ellegren H: Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004, 5 (6): 435-445. 10.1038/nrg1348.
Article
PubMed
Google Scholar
Levinson G, Gutman GA: Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987, 4 (3): 203-221.
PubMed
Google Scholar
Richard GF, Paques F: Mini- and microsatellite expansions: the recombination connection. EMBO Rep. 2000, 1 (2): 122-126. 10.1093/embo-reports/kvd031.
Article
PubMed
PubMed Central
Google Scholar
Jakupciak JP, Wells RD: Genetic instabilities of triplet repeat sequences by recombination. IUBMB Life. 2000, 50 (6): 355-359.
Article
PubMed
Google Scholar
Levinson G, Gutman GA: High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 1987, 15 (13): 5323-5338. 10.1093/nar/15.13.5323.
Article
PubMed
PubMed Central
Google Scholar
Henderson ST, Petes TD: Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol Cell Biol. 1992, 12 (6): 2749-2757.
Article
PubMed
PubMed Central
Google Scholar
Gusmao L, Sanchez-Diz P, Calafell F, Martin P, Alonso CA, Alvarez-Fernandez F, Alves C, Borjas-Fajardo L, Bozzo WR, Bravo ML, Builes JJ, Capilla J, Carvalho M, Castillo C, Catanesi CI, Corach D, Di Lonardo AM, Espinheira R, Fagundes de Carvalho E, Farfan MJ, Figueiredo HP, Gomes I, Lojo MM, Marino M, Pinheiro MF, Pontes ML, Prieto V, Ramos-Luis E, Riancho JA, Souza Goes AC, Santapa OA, Sumita DR, Vallejo G, Vidal Rioja L, Vide MC, Vieira da Silva CI, Whittle MR, Zabala W, Zarrabeitia MT, Alonso A, Carracedo A, Amorim A: Mutation rates at Y chromosome specific microsatellites. Hum Mutat. 2005, 26 (6): 520-528. 10.1002/humu.20254.
Article
PubMed
Google Scholar
Kayser M, Roewer L, Hedman M, Henke L, Henke J, Brauer S, Kruger C, Krawczak M, Nagy M, Dobosz T, Szibor R, de Knijff P, Stoneking M, Sajantila A: Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs. Am J Hum Genet. 2000, 66 (5): 1580-1588. 10.1086/302905.
Article
PubMed
PubMed Central
Google Scholar
Nebel A, Filon D, Hohoff C, Faerman M, Brinkmann B, Oppenheim A: Haplogroup-specific deviation from the stepwise mutation model at the microsatellite loci DYS388 and DYS392. Eur J Hum Genet. 2001, 9 (1): 22-26. 10.1038/sj.ejhg.5200577.
Article
PubMed
Google Scholar
Huang QY, Xu FH, Shen H, Deng HY, Liu YJ, Liu YZ, Li JL, Recker RR, Deng HW: Mutation patterns at dinucleotide microsatellite loci in humans. Am J Hum Genet. 2002, 70 (3): 625-634. 10.1086/338997.
Article
PubMed
PubMed Central
Google Scholar
Payseur BA, Nachman MW: Microsatellite variation and recombination rate in the human genome. Genetics. 2000, 156 (3): 1285-1298.
PubMed
PubMed Central
Google Scholar
Jeffreys AJ, Kauppi L, Neumann R: Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet. 2001, 29 (2): 217-222. 10.1038/ng1001-217.
Article
PubMed
Google Scholar
Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD: Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000, 97 (21): 11383-11390. 10.1073/pnas.97.21.11383.
Article
PubMed
PubMed Central
Google Scholar
Myers S, Bottolo L, Freeman C, McVean G, Donnelly P: A fine-scale map of recombination rates and hotspots across the human genome. Science. 2005, 310 (5746): 321-324. 10.1126/science.1117196.
Article
PubMed
Google Scholar
Jeffreys AJ, Neumann R, Panayi M, Myers S, Donnelly P: Human recombination hot spots hidden in regions of strong marker association. Nat Genet. 2005, 37 (6): 601-606. 10.1038/ng1565.
Article
PubMed
Google Scholar
Brandström M, Bagshaw ATM, Gemmell NJ, Ellegren H: In preparation.
Nishant KT, Rao MR: Molecular features of meiotic recombination hot spots. Bioessays. 2006, 28 (1): 45-56. 10.1002/bies.20349.
Article
PubMed
Google Scholar
Jeffreys AJ, Neumann R: Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot. Hum Mol Genet. 2005, 14 (15): 2277-2287. 10.1093/hmg/ddi232.
Article
PubMed
Google Scholar
Kauppi L, Jeffreys AJ, Keeney S: Where the crossovers are: recombination distributions in mammals. Nat Rev Genet. 2004, 5 (6): 413-424. 10.1038/nrg1346.
Article
PubMed
Google Scholar
Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ: Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004, 14 (4): 528-538. 10.1101/gr.1970304.
Article
PubMed
PubMed Central
Google Scholar
Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K: A high-resolution recombination map of the human genome. Nat Genet. 2002, 31 (3): 241-247.
PubMed
Google Scholar
Messier W, Li SH, Stewart CB: The birth of microsatellites. Nature. 1996, 381 (6582): 483-10.1038/381483a0.
Article
PubMed
Google Scholar
Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B: Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998, 62 (6): 1408-1415. 10.1086/301869.
Article
PubMed
PubMed Central
Google Scholar
Weber JL: Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics. 1990, 7 (4): 524-530. 10.1016/0888-7543(90)90195-Z.
Article
PubMed
Google Scholar
Zhu Y, Queller DC, Strassmann JE: A phylogenetic perspective on sequence evolution in microsatellite loci. J Mol Evol. 2000, 50 (4): 324-338.
PubMed
Google Scholar
Baudat F, Nicolas A: Clustering of meiotic double-strand breaks on yeast chromosome III. Proc Natl Acad Sci U S A. 1997, 94 (10): 5213-5218. 10.1073/pnas.94.10.5213.
Article
PubMed
PubMed Central
Google Scholar
Raghavan S, Burma PK, Brahmachari SK: Positional preferences of polypurine/polypyrimidine tracts in Saccharomyces cerevisiae genome: implications for cis regulation of gene expression. J Mol Evol. 1997, 45 (5): 485-498. 10.1007/PL00006253.
Article
PubMed
Google Scholar
Bagshaw AT, Pitt JP, Gemmell NJ: Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots. BMC Genomics. 2006, 7: 179-10.1186/1471-2164-7-179.
Article
PubMed
PubMed Central
Google Scholar
Wierdl M, Greene CN, Datta A, Jinks-Robertson S, Petes TD: Destabilization of simple repetitive DNA sequences by transcription in yeast. Genetics. 1996, 143 (2): 713-721.
PubMed
PubMed Central
Google Scholar
Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA: Dissecting the regulatory circuitry of a eukaryotic genome. Cell. 1988, 95 (5): 717-728. 10.1016/S0092-8674(00)81641-4.
Article
Google Scholar
Ptak SE, Hinds DA, Koehler K, Nickel B, Patil N, Ballinger DG, Przeworski M, Frazer KA, Paabo S: Fine-scale recombination patterns differ between chimpanzees and humans. Nat Genet. 2005, 37 (4): 429-434. 10.1038/ng1529.
Article
PubMed
Google Scholar
Winckler W, Myers SR, Richter DJ, Onofrio RC, McDonald GJ, Bontrop RE, McVean GA, Gabriel SB, Reich D, Donnelly P, Altshuler D: Comparison of fine-scale recombination rates in humans and chimpanzees. Science. 2005, 308 (5718): 107-111. 10.1126/science.1105322.
Article
PubMed
Google Scholar
Murphy KE, Stringer JR: RecA independent recombination of poly[d(GT)-d(CA)] in pBR322. Nucleic Acids Res. 1986, 14 (18): 7325-7340. 10.1093/nar/14.18.7325.
Article
PubMed
PubMed Central
Google Scholar
Bullock P, Miller J, Botchan M: Effects of poly[d(pGpT).d(pApC)] and poly[d(pCpG).d(pCpG)] repeats on homologous recombination in somatic cells. Mol Cell Biol. 1986, 6 (11): 3948-3953.
Article
PubMed
PubMed Central
Google Scholar
Napierala M, Dere R, Vetcher A, Wells RD: Structure-dependent recombination hot spot activity of GAA.TTC sequences from intron 1 of the Friedreich's ataxia gene. J Biol Chem. 2004, 279 (8): 6444-6454. 10.1074/jbc.M309596200.
Article
PubMed
Google Scholar
Wahls WP, Wallace LJ, Moore PD: The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Mol Cell Biol. 1990, 10 (2): 785-793.
Article
PubMed
PubMed Central
Google Scholar
Napierala M, Parniewski P, Pluciennik A, Wells RD: Long CTG.CAG repeat sequences markedly stimulate intramolecular recombination. J Biol Chem. 2002, 277 (37): 34087-34100. 10.1074/jbc.M202128200.
Article
PubMed
Google Scholar
Petes TD: Meiotic recombination hot spots and cold spots. Nat Rev Genet. 2001, 2 (5): 360-369. 10.1038/35072078.
Article
PubMed
Google Scholar
Lu Q, Teare JM, Granok H, Swede MJ, Xu J, Elgin SC: The capacity to form H-DNA cannot substitute for GAGA factor binding to a (CT)n*(GA)n regulatory site. Nucleic Acids Res. 2003, 31 (10): 2483-2494. 10.1093/nar/gkg369.
Article
PubMed
PubMed Central
Google Scholar
Wang YH, Amirhaeri S, Kang S, Wells RD, Griffith JD: Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science. 1994, 265 (5172): 669-671. 10.1126/science.8036515.
Article
PubMed
Google Scholar
Otten AD, Tapscott SJ: Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc Natl Acad Sci U S A. 1995, 92 (12): 5465-5469. 10.1073/pnas.92.12.5465.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Wu TC, Lichten M: The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. Embo J. 1995, 14 (18): 4599-4608.
PubMed
PubMed Central
Google Scholar
de Massy B, Rocco V, Nicolas A: The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. Embo J. 1995, 14 (18): 4589-4598.
PubMed
PubMed Central
Google Scholar
Ellegren H: Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet. 2000, 16 (12): 551-558. 10.1016/S0168-9525(00)02139-9.
Article
PubMed
Google Scholar
Hashem VI, Rosche WA, Sinden RR: Genetic recombination destabilizes (CTG)n.(CAG)n repeats in E. coli. Mutat Res. 2004, 554 (1-2): 95-109.
Article
PubMed
Google Scholar
Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC: Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature. 2003, 423 (6942): 873-876. 10.1038/nature01723.
Article
PubMed
Google Scholar
Fouche N, Ozgur S, Roy D, Griffith JD: Replication fork regression in repetitive DNAs. Nucleic Acids Res. 2006, 34 (20): 6044-6050. 10.1093/nar/gkl757.
Article
PubMed
PubMed Central
Google Scholar
Hile SE, Eckert KA: Positive correlation between DNA polymerase pausing and mutagenesis within polypyrimidine/polypurine microsatellite sequences. J Mol Biol. 2004, 335 (3): 745-759. 10.1016/j.jmb.2003.10.075.
Article
PubMed
Google Scholar
[http://repeatfinder.sourceforge.net/]