Vaisanen J, Hakansson J, Jensen P. Social interactions in Red Junglefowl (Gallus gallus) and White Leghorn layers in stable groups and after re-grouping. Brit Poult Sci. 2005;46:156–68.
Article
CAS
Google Scholar
Estevez I, Andersen IL, Naevdal E. Group size, density and social dynamics in farm animals. Appl Anim Behav Sci. 2007;103:185–204.
Article
Google Scholar
Estevez I, Keeling LJ, Newberry RC. Decreasing aggressions with increasing group size in young domestic fowl. Appl Anim Behav Sci. 2003;84:213–8.
Article
Google Scholar
Estevez I, Newberry RC, Keeling LJ. Dynamics of aggression in the domestic fowl. Appl Anim Behav Sci. 2002;76:307–25.
Article
Google Scholar
Leone EH, Estevez I, Christman MC. Environmental complexity and group size: Immediate effects on use of space by domestic fowl. Appl Anim Behav Sci. 2007;102:39–52.
Article
Google Scholar
Mills AD, Faure JM. Divergent selection for duration of tonic immobility and social reinstatement behavior in Japanese Quail (Coturnix coturnix japonica) chicks. J Comp Psychol. 1991;105:25–38.
Article
CAS
PubMed
Google Scholar
Francois N, Mills AD, Faure JM. Inter-individual distances during open-field tests in Japanese quail (Coturnix japonica) selected for high or low levels of social reinstatement behaviour. Behav Processes. 1999;47:73–80.
Article
CAS
PubMed
Google Scholar
Schweitzer C, Levy F, Arnould C. Increasing group size decreases social bonding in young Japanese quail, Coturnix japonica. Anim Behav. 2011;81:535–42.
Article
Google Scholar
Recoquillay J, Leterrier C, Calandreau L, Bertin A, Pitel F, Gourichon D, et al. Evidence of phenotypic and genetic relationships between sociality. Emotional reactivity and production traits in Japanese quail. Plos One. 2013;8:e8215.
Article
Google Scholar
Schütz KE, Kerje S, Jacobsson L, Forkman B, Carlborg O, Andersson L, et al. Major growth QTLs in fowl are related to fearful behavior: possible genetic links between fear responses and production traits in a red junglefowl x White Leghorn intercross. Behav Gen. 2004;34:121–30.
Article
Google Scholar
Minvielle F, Kayang BB, Inoue-Murayama M, Miwa M, Vignal A, Gourichon D, et al. Microsatellite mapping of QTL affecting growth, feed consumption, egg production, tonic immobility and body temperature of Japanese quail. BMC Genomics. 2005;6:87.
Article
PubMed Central
PubMed
Google Scholar
Beaumont C, Roussot O, Feve K, Vignoles F, Leroux S, Pitel F, et al. A genome scan with AFLP((TM)) markers to detect fearfulness-related QTLs in Japanese quail. Anim Genet. 2005;36:401–7.
Article
CAS
PubMed
Google Scholar
Buitenhuis AJ, Rodenburg TB, Siwek M, Cornelissen SJB, Nieuwland MGB, Crooijmans R, et al. Identification of QTLs involved in open-field behavior in young and adult laying hens. Behav Genet. 2004;34:325–33.
Article
CAS
PubMed
Google Scholar
Buitenhuis AJ, Rodenburg TB, Siwek M, Cornelissen SJB, Nieuwland MGB, Crooijmans R, et al. Identification of quantitative trait loci for receiving pecks in young and adult laying hens. Poult Sci. 2003;82:1661–7.
Article
CAS
PubMed
Google Scholar
Buitenhuis AJ, Rodenburg TB, van Hierden YM, Siwek M, Cornelissen SJB, Nieuwland MGB, et al. Mapping quantitative trait loci affecting feather pecking behavior and stress response in laying hens. Poult Sci. 2003;82:1215–22.
Article
CAS
PubMed
Google Scholar
Kerje S, Carlborg O, Jacobsson L, Schutz K, Hartmann C, Jensen P, et al. The twofold difference in adult size between the Red Junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim Genet. 2003;34:264–74.
Article
CAS
PubMed
Google Scholar
Wiren A, Jensen P. A growth QTL on chicken chromosome 1 affects emotionality and sociality. Behav Genet. 2011;41:303–11.
Article
PubMed
Google Scholar
Roussot O, Feve K, Plisson-Petit F, Pitel F, Faure JM, Beaumont C, et al. AFLP linkage map of the Japanese quail Coturnix japonica. Genet Sel Evol. 2003;35:559–72.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kayang BB, Vignal A, Inoue-Murayama M, Miwa M, Monvoisin JL, Ito S, et al. A first-generation microsatellite linkage map of the Japanese quail. Anim Genet. 2004;35:195–200.
Article
CAS
PubMed
Google Scholar
Kikuchi S, Fujima D, Sasazaki S, Tsuji S, Mizutani M, Fujiwara A, et al. Construction of a genetic linkage map of Japanese quail (Coturnix japonica) based on AFLP and microsatellite markers. Anim Genet. 2005;36:227–31.
Article
CAS
PubMed
Google Scholar
Jones RB, Mills AD. Divergent selection for social reinstatement behaviour in Japanese quail: effects on sociality and social discrimination. Avian Biol Res. 1999;10:213–23.
CAS
Google Scholar
Schweitzer C, Houdelier C, Lumineau S, Levy F, Arnould C. Social motivation does not go hand in hand with social bonding between two familiar Japanese quail chicks, Coturnix japonica. Anim Behav. 2010;79:571–8.
Article
Google Scholar
Schweitzer C, Arnould C. Emotional reactivity of Japanese quail chicks with high or low social motivation reared under unstable social conditions. Appl Anim Behav Sci. 2010;125:143–50.
Article
Google Scholar
Burns M, Domjan M, Mills AD. Effects of genetic selection for fearfulness or social reinstatement behavior on adult social and sexual behavior in domestic quail (Coturnix japonica). Psychobiology. 1998;26:249–57.
Google Scholar
Mills AD, Jones RB, Faure JM, Williams JB. Responses to isolation in Japanese Quail genetically selected for high and low sociality. Physiol Behav. 1993;53:183–9.
Article
CAS
PubMed
Google Scholar
Jones RB, Waddington D. Modification of fear in domestic Chicks, Gallus gallus domesticus, via regular handling and early environmental enrichment. Anim Behav. 1992;43:1021–33.
Article
Google Scholar
Jones RB. Assessment of fear in adult laying hens - correlational analysis of methods and measures. Br Poultry Sci. 1987;28:319–26.
Article
CAS
Google Scholar
Savory CJ. Feather pecking and cannibalism. Worlds Poult Sci J. 1995;51:215–9.
Article
Google Scholar
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.
Article
PubMed Central
PubMed
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed Central
PubMed
Google Scholar
Green P, Falls K, Crooks S. Cri-Map Version 2.4. 1990. [http://saf.bio.caltech.edu/saf_manuals/crimap-doc.html]
Elsen JM, Mangin B, Goffinet B, Boichard D, Le Roy P. Alternative models for QTL detection in livestock. I. General introduction. Genet Sel Evol. 1999;31:213–24.
Article
PubMed Central
Google Scholar
Rebai A, Goffinet B, Mangin B. Approximate thresholds of interval mapping tests for QTL detection. Genetics. 1994;138:235–40.
CAS
PubMed Central
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignement search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
UCSC Genome Browser [http://genome-euro.ucsc.edu/]
Chicken QTLdb [http://www.animalgenome.org/cgi-bin/QTLdb/GG/index]
Zhi-Liang H, Park CA, Wu X-L, Reecy JM. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 2013;41:871–9.
Article
Google Scholar
Fresard L, Leroux S, Dehais P, Servin B, Gilbert H, Bouchez O, et al. Fine mapping of complex traits in non-model species: using next generation sequencing and advanced intercross lines in Japanese quail. BMC Genomics. 2012;13:11.
Article
Google Scholar
Sasaki M. High resolution G-band karyotypes of domestic fowl and the Japanese Quail. Chromosome Information Service. 1981;31:26–8.
Google Scholar
Minvielle F. What are quail good for in a chicken-focused world? Worlds Poult Sci J. 2009;65:601–8.
Article
Google Scholar
Inoue-Murayama M, Kayang BB, Kimura K, Ide H, Nomura A, Takahashi H, et al. Chicken microsatellite primers are not efficient markers for Japanese quail. Anim Genet. 2001;32:7–11.
Article
CAS
PubMed
Google Scholar
Kayang BB, Fillon V, Inoue-Murayama M, Miwa M, Leroux S, Feve K, et al. Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence. BMC Genomics. 2006;7:18.
Article
Google Scholar
Shibusawa M, Minai S, Nishida-Umehara C, Suzuki T, Mano T, Yamada K, et al. A comparative cytogenetic study of chromosome homology between chicken and Japanese quail. Cytogenet Cell Genet. 2001;95:103–9.
Article
CAS
PubMed
Google Scholar
Sasazaki S, Hinenoya T, Lin B, Fujiwara A, Mannen H. A comparative map of macrochromosomes between chicken and Japanese quail based on orthologous genes. Anim Genet. 2006;37:316–20.
Article
CAS
PubMed
Google Scholar
Tuiskula-Haavisto M, De Koning DJ, Honkatukia M, Schulman NF, Maki-Tanila A, Vilkki J. Quantitative trait loci with parent-of-origin effects in chicken. Genet Res. 2004;84:57–66.
Article
CAS
PubMed
Google Scholar
Martin FW, Martin Davis AG, A. M: Quail. An egg and meat production system. ECHO; 1998. http://c.ymcdn.com/sites/www.echocommunity.org/resource/collection/12164dcb-6fcc-42e5-899adba41b1a9b19/Quail--An_Egg_&_Meat_Production_System.pdf?hhSearchTerms=%22quail%22
Lotfi E, Zerehdaran S, Raoufi Z. Genetic properties of egg quality traits and their correlations with performance traits in Japanese quail. Br Poultry Sci. 2012;53:585–91.
Article
CAS
Google Scholar
Silva LP, Ribeiro JC, Crispim AC, Silva FG, Bonafe CM, Silva FF, et al. Genetic parameters of body weight and egg traits in meat-type quail. Livest Sci. 2013;153:27–32.
Article
Google Scholar
Ozsoy AN, Aktan S. Estimation of genetic parameters for body weight and egg weight traits in Japanese quails. Trends in Animal and Veterinary Sciences. 2011;2:17–20.
Google Scholar
Saatci M, Omed H, Dewi IA. Genetic parameters from univariate and bivariate analyses of egg and weight traits in Japanese quail. Poult Sci. 2006;85:185–90.
Article
CAS
PubMed
Google Scholar
Biscarini F, Bovenhuis H, van Arendonk JAM, Parmentier HK, Jungerius AP, van der Poel JJ. Across-line SNP association study of innate and adaptive immune response in laying hens. Anim Genet. 2010;41:26–38.
Article
CAS
PubMed
Google Scholar
Jensen P, Keeling L, Schutz K, Andersson L, Mormede P, Brandstrom H, et al. Feather pecking in chickens is genetically related to behavioural and developmental traits. Physiol Behav. 2005;86:52–60.
Article
CAS
PubMed
Google Scholar
Schütz K, Kerje S, Carlborg O, Jacobsson L, Andersson L, Jensen P. QTL analysis of a red junglefowl x white leghorn intercross reveals trade-off in resource allocation between behavior and production traits. Behav Gen. 2002;32:423–33.
Article
Google Scholar
Scott AL, Bortolato M, Chen K, Shih JC. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. Neuroreport. 2008;19:739–43.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, et al. Aggressive-behavior and altered amounts of brain-serotonin and norepinephrine in mice lacking MAOA. Science. 1995;268:1763–6.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shih JC, Chen K, Ridd MJ. Monoamine oxidase: from genes to behavior. Annu Rev Neurosci. 1999;22:197–217.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kiser D, SteemerS B, Branchi I, Homberg JR. The reciprocal interaction between serotonin and social behaviour. Neurosci Biobehav Rev. 2012;36:786–98.
Article
CAS
PubMed
Google Scholar
van Hierden YM, Korte SM, Ruesink EW, van Reenen CG, Engel B, Korte-Bouws GAH, et al. Adrenocortical reactivity and central serotonin and dopamine turnover in young chicks from a high and low feather-pecking line of laying hens. Physiol Behav. 2002;75:653–9.
Article
PubMed
Google Scholar
Wysocki M, Preuss S, Stratz P, Bennewitz J. Investigating gene expression differences in two chicken groups with variable propensity to feather pecking. Anim Genet. 2013;44:773–7.
Article
CAS
PubMed
Google Scholar
Schweitzer C. Caractérisation des liens sociaux chez la caille Japonaise (Coturnix japonica) : motivation sociale et lien entre familiers. François-Rabelais; 2009b.
Schweitzer C, Poindron P, Arnould C. Social motivation affects the display of individual discrimination in young and adult Japanese quail (Coturnix japonica). Dev Psychobiol. 2009;51:311–21.
Article
CAS
PubMed
Google Scholar
Francois N, Decros S, Picard M, Faure JM, Mills AD. Effect of group disruption on social behaviour in lines of Japanese quail (Coturnix japonica) selected for high or low levels of social reinstatement behaviour. Behav Processes. 2000;48:171–81.
Article
CAS
PubMed
Google Scholar
Bindra D, Thompson WR. An evaluation of defecation and urination as measures of fearfulness. J Comp Physiol Psychol. 1953;46:43–5.
Article
CAS
PubMed
Google Scholar
Forkman B, Boissy A, Meunier-Salauen MC, Canali E, Jones RB. A critical review of fear tests used on cattle, pigs, sheep, poultry and horses. Physiol Behav. 2007;92:340–74.
Article
CAS
PubMed
Google Scholar
Wiren A, Wright D, Jensen P. Domestication-related variation in social preferences in chickens is affected by genotype on a growth QTL. Genes Brain Behav. 2013;12:330–7.
Article
CAS
PubMed
Google Scholar
Podisi BK, Knott SA, Dunn IC, Law AS, Burt DW, Hocking PM. Overlap of quantitative trait loci for early growth rate, and for body weight and age at onset of sexual maturity in chickens. Reproduction. 2011;141:381–9.
Article
CAS
PubMed
Google Scholar
Wright D, Rubin CJ, Barrio AM, Schutz K, Kerje S, Brandstrom H, et al. The genetic architecture of domestication in the chicken: effects of pleiotropy and linkage. Mol Ecol. 2010;19:5140–56.
Article
CAS
PubMed
Google Scholar
Ingenuity Pathway Analysis [http://www.ingenuity.com/]
Zhu B, Chen CS, Moyzis RK, Dong Q, Chen CH, He QH, et al. The DOPA decarboxylase (DDC) gene is associated with alerting attention. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;43:140–5.
Article
CAS
Google Scholar
Bevilacqua L, Doly S, Kaprio J, Yuan QP, Tikkanen R, Paunio T, et al. A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature. 2010;468:1061–U1460.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhu B, Chen CS, Moyzis RK, Dong Q, Chen CH, He QH, et al. Association between the HTR2B gene and the personality trait of fun seeking. Pers Individ Differ. 2012;53:1029–33.
Article
Google Scholar