Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment. J Environ Monit. 2011;5:1145–55.
Article
Google Scholar
Thomas CR, George S, Horst AM, Ji Z, Miller RJ, Peralta-Videa JR, et al. Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano. 2011;5:13–20.
Article
CAS
PubMed
Google Scholar
Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008;42:8959–64.
Article
CAS
PubMed
Google Scholar
Oukarroum A, Bras S, Perreault F, Popovic R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf. 2012;78:80–5.
Article
CAS
PubMed
Google Scholar
Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G. Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ. 2013;445–446:371–6.
Article
PubMed
Google Scholar
Perreault F, Bogdan N, Morin M, Claverie J, Popovic R. Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology. 2012;2:109–20.
Article
Google Scholar
Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K, et al. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology. 2013;3:323–37.
Article
Google Scholar
Van Hoecke K, De Schamphelaere KA, Van der Meeren P, Lucas S, Janssen CR. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem. 2008;9:1948–57.
Article
Google Scholar
Ma X, Geiser-Lee J, Deng Y, Kolmakov A. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. 2010;408:3053–61.
Article
CAS
PubMed
Google Scholar
Simon DF, Domingos RF, Hauser C, Hutchins CM, Zerges W, Wilkinson KJ. Transcriptome sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl Environ Microbiol. 2013;79:4774–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F, Lee KP, et al. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science. 2004;306:1183–5.
Article
CAS
PubMed
Google Scholar
Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35:259–70.
Article
CAS
PubMed
Google Scholar
Asli S, Neumann PM. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009;5:577–84.
Article
Google Scholar
Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59:3485–98.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, et al. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small. 2009;10:1128–32.
Google Scholar
Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, et al. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A. 2011;108:1028–33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H, et al. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater. 2012;241–242:55–62.
Article
PubMed
Google Scholar
Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol. 2013;18:10637–44.
Google Scholar
Shah J. Plants under attack: systemic signals in defence. Curr Opin Plant Biol. 2009;12:459–64.
Article
CAS
PubMed
Google Scholar
Dempsey DA, Klessig DF. SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 2013;17:538–45.
Article
Google Scholar
Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69:473–88.
Article
CAS
PubMed
Google Scholar
Lee SC, Luan S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 2012;35:53–60.
Article
CAS
PubMed
Google Scholar
Frazier TP, Burklew CE, Zhang B. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics. 2014;14:75–83.
Article
CAS
PubMed
Google Scholar
Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006;126:467–75.
Article
CAS
PubMed
Google Scholar
Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci. 2010;15:395–401.
Article
CAS
PubMed
Google Scholar
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79.
Article
CAS
PubMed
Google Scholar
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature. 2002;415:977–83.
Article
CAS
PubMed
Google Scholar
Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A. 2005;102:11934–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 2010;6, e1001102.
Article
PubMed Central
PubMed
Google Scholar
Thibaud M, Arrighi J, Bayle V, Chiarenza S, Creff A, Bustos R, et al. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 2010;64:775–89.
Article
CAS
PubMed
Google Scholar
Péret B, Clément M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci. 2011;16:442–50.
Article
PubMed
Google Scholar
Abel S. Phosphate sensing in root development. Curr Opin Plant Biol. 2011;14:303–9.
Article
CAS
PubMed
Google Scholar
Lynch JP, Brown KM. Topsoil foraging—an architectural adaptation to low phosphorous availability. Plant Soil. 2001;237:225–37.
Article
CAS
Google Scholar
Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet. 2012;8, e1002446.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002;14:3237–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gan Y, Filleur S, Rahman A, Gotensparre S, Forde BG. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta. 2005;222:730–42.
Article
CAS
PubMed
Google Scholar
Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, et al. More than the ions: the effect of silver nanoparticles on Lolium multiflorum. Environ Sci Technol. 2011;45:2360–7.
Article
CAS
PubMed
Google Scholar
Ma Z, Bielenberg DG, Brown KM, Lynch JP. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Env. 2001;24:459–67.
Article
CAS
Google Scholar
Wang Y, Zhang W, Li K, Sun F, Han C, Wang Y, et al. Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. J Plant Res. 2008;121:87–96.
Article
PubMed
Google Scholar
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, et al. A gene expression map of the Arabidopsis root. Science. 2003;302:1956–60.
Article
CAS
PubMed
Google Scholar
Galvan-Ampudia CS, Testerink C. Salt stress signals shape the plant root. Curr Opin Plant Bio. 2011;14:296–302.
Article
CAS
Google Scholar
Duan L, Dietrich D, Ng CH, Chan PM, Bhalerao R, Bennett MJ, et al. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell. 2013;25:324–41.
Article
PubMed Central
CAS
PubMed
Google Scholar
McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, et al. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol. 2005;139:949–59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kazan K. Negative regulation of defence and stress genes by EAR-motif-containing repressors. Trends Plant Sci. 2006;11:109–12.
Article
CAS
PubMed
Google Scholar
Dong CJ, Liu JY. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol. 2010;10:47.
Article
PubMed Central
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004;14:787–99.
Article
CAS
PubMed
Google Scholar
Sunkar R. MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol. 2010;21:805–11.
Article
CAS
PubMed
Google Scholar
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39:1033–7.
Article
CAS
PubMed
Google Scholar
Dixon RA, Paiva NL. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995;7:1085–97.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, et al. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010;10:2296–302.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang S, Kurepa J, Smalle JA. Ultra-small TiO(2) nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ. 2011;34:811–20.
Article
CAS
PubMed
Google Scholar
Prime-A-Plant Group, Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, et al. Priming: getting ready for battle. Mol Plant Microbe Interact. 2006;19:1062–71.
Article
Google Scholar
Beckers GJ, Conrath U. Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol. 2007;10:425–31.
Article
PubMed
Google Scholar
Liu F, Jiang H, Ye S, Chen WP, Liang W, Xu Y, et al. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res. 2010;20:539–52.
Article
CAS
PubMed
Google Scholar
Shen CX, Zhang QF, Li J, Bi FC, Yao N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot. 2010;97:1602–9.
Article
CAS
PubMed
Google Scholar
Ye H, Li L, Guo H, Yin Y. MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A. 2013;109:20142–7.
Article
Google Scholar
Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol. 2013;13:229.
Article
PubMed Central
PubMed
Google Scholar
Hassidim M, Harir Y, Yakir E, Kron I, Green RM. Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta. 2009;230:481–91.
Article
CAS
PubMed
Google Scholar
Chen Z, Kloek AP, Boch J, Katagiri F, Kunkel BN. The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells. Mol Plant Microbe Interact. 2010;3:1312–21.
Google Scholar
Rioja C, Van Wees SC, Charlton KA, Pieterse CM, Lorenzo O, García-Sánchez S. Wide screening of phage-displayed libraries identifies immune targets in planta. PLoS One. 2013;8, e54654.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002;130:2129–41.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress. Plant Cell. 2002;14:S165–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reymond P, Weber H, Damond M, Farmer EE. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 2000;12:707–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol. 2010;51:1821–39.
Article
PubMed Central
CAS
PubMed
Google Scholar
Datta R, Sinha R, Chattopadhyay S. Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid. J Biosci. 2013;38:317–28.
Article
CAS
PubMed
Google Scholar