Bennetzen JL. Transposable element contributions to plant gene and genome evolution. Plant Mol Biol. 2000;42:251–69.
Article
CAS
PubMed
Google Scholar
Bennetzen JL, Ma J, Devos KM. Mechanisms of recent genome size variation in flowering plants. Plant Mol Biol. 2005;95:127–32.
CAS
Google Scholar
Brookfield JYF. The ecology of the genome – mobile DNA elements and their hosts. Nat Rev. 2005;6:128–36.
Article
CAS
Google Scholar
Venner S, Feschotte C, Biemont C. Dynamics of transposable elements: towards a community ecology of the genome. Trends Gen. 2009;739:1–7.
Google Scholar
Pielou EC. Ecological diversity. New York: Wiley-Interscience; 1975.
Google Scholar
Tokeshi M. Niche apportionment or random assortment – species abundance patters explained. J Animal Ecol. 1990;59:1129–46.
Article
Google Scholar
Hubbell SP. The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press; 2001.
Google Scholar
Gregory TR. Evolution of the genome. San Diego: Elsevier, Inc; 2005.
Google Scholar
Slotkin RK, Nuthikattu S, Jiang N. The impact of transposable elements on gene and genome evolution. In: Plant genome diversity. Vol. 1. Vienna: Springer-Verlag Wien; 2014.
Google Scholar
Lynch M. The origins of genome architecture. Sunderland: Sinauer Associates, Inc; 2007.
Google Scholar
Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008;18:359–69.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, et al. Exceptional diversity, non-random distribution, and rapid evolution or retroelements in the B73 maize genome. PLoS Genet. 2009;5:1–13.
Article
Google Scholar
Baucom RS, Estill JC, Leebens-Mack J, Bennetzen JL. Natural selection on gene function drives the evolution of LTR retrotransposon families in the rice genome. Genome Res. 2009;19:243–54.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nellåker C, Keane TM, Yalcin B, Wong K, Agam A, Belgard TG, et al. The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol. 2012;13:R45.
Article
PubMed Central
PubMed
Google Scholar
Volff JN, Korting C, Meyer A, Schartl M. Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol. 2001;18:427–31.
Article
CAS
PubMed
Google Scholar
Ray DA, Xing J, Salem AH, Batzer MA. SINEs of a nearly perfect character. Syst Biol. 2006;55:928Y935.
Article
Google Scholar
Bohne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff J. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res. 2008;16:203–15.
Article
PubMed
Google Scholar
Dobigny G, Ozouf-Costaz C, Waters P, Bonillo C, Volobouev V. LINE-1 amplification accompanies explosive genome repatterning in Taterillus (Rodentia, Gerbillinae). Chromosome Res. 2004;12:787–93.
Article
CAS
PubMed
Google Scholar
de Boer JG, Yazawa R, Davidson WS, Koop BF. Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics. 2007;8:422.
Article
PubMed Central
PubMed
Google Scholar
Ungerer MC, Strakosh SC, Zhen Y. Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol. 2006;16:R872–3.
Article
CAS
PubMed
Google Scholar
Staton SE, Ungerer MC, Moore RC. The genomic organization of Ty3/gypsy-like retrotransposons in Helianthus (Asteraceae) homoploid hybrid species. Am J Bot. 2009;96:1646–55.
Article
CAS
PubMed
Google Scholar
Stevens PF. Angiosperm Phylogeny Website. Version 8, June 2007. [http://www.mobot.org/MOBOT/research/APweb].
Kim KJ, Choi KS, Jansen RK. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol Biol Evol. 2005;22:1783–92.
Article
CAS
PubMed
Google Scholar
Panero JL, Funk VA. The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol Phylogenet Evol. 2008;47:757–82.
Article
CAS
PubMed
Google Scholar
Funk VA. Systematics, evolution, and biogeography of the compositae. Vienna: IAPT; 2009.
Google Scholar
Santini S, Cavallini A, Natali L, Minelli S, Maggini F, Cionini PG. Ty1/Copia- and Ty3/Gypsy-like DNA sequences in Helianthus species. Chromosoma. 2002;111:192–200.
Article
CAS
PubMed
Google Scholar
Natali L, Santini S, Giordani T, Minelli S, Maestrini P, Cionini PG, et al. Distribution of Ty3-Gypsy- and Ty1-Copia-like DNA sequences in the genus Helianthus and other Asteraceae. Genome. 2006;49:64–72.
Article
CAS
PubMed
Google Scholar
Cavallini A, Natali L, Zuccolo A, Giordani T, Jurman I, Ferrillo V, et al. Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet. 2010;120:491–508.
Article
CAS
PubMed
Google Scholar
Staton SE, Hartman Bakken B, Blackman B, Chapman M, Kane N, Tang S, et al. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. Plant J. 2012;72:142–53.
Article
CAS
PubMed
Google Scholar
Peterson-Burch BD, Wright DA, Laten HM, Voytas DF. Retroviruses in plants? Trends Gen. 2000;16:151–2.
Article
CAS
Google Scholar
Akhipova I. Distribution and phylogeny of Penelope-like in Eukaryotes. Syst Biol. 2006;55:875–8.
Article
Google Scholar
Bennetzen JL. Patterns in grass genome evolution. Curr Opin Plant Biol. 2007;10:176–81.
Article
CAS
PubMed
Google Scholar
Devos KM. Grass genome organization and evolution. Curr Opin Plant Biol. 2010;13:139–45.
Article
CAS
PubMed
Google Scholar
Ma M. Species richness vs evenness: independent relationship and different responses to edaphic factors. OIKOS. 2005;111:192–8.
Article
Google Scholar
Lander E, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;15:860–921.
Article
Google Scholar
DeBarry JD, Kissinger JC. Jumbled genomes: missing apicomplexan synteny. Mol Biol Evol. 2011;28:2855–71.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 1998;8:464–78.
CAS
PubMed
Google Scholar
SanMiguel P, Tikhonov A, Jin Y, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–8.
Article
CAS
PubMed
Google Scholar
Schnable P, Ware D, Fulton RS, Stein JC, Wei F, Pastemak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.
Article
CAS
PubMed
Google Scholar
Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A. 2014;111:5135–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Furano AV, Duvernell DD, Boissinot S. L1 (LINE-1) diversity differs dramatically between mammals and fish. Trends Gen. 2004;20:9–14.
Article
CAS
Google Scholar
Neafsey DE, Blumenstiel JP, Hartl DL. Different regulatory mechanisms underlie similar transposable element profiles in pufferfish and fruitfiles. Mol Biol Evol. 2014;21:2310–8.
Article
Google Scholar
Eickbush TH, Furano AV. Fruit flies and humans respond differently to retrotransposons. Curr Opin Gen Dev. 2002;12:669–74.
Article
CAS
Google Scholar
Hua-Van A, Le Rouzic A, Maisonhaute C, Capy P. Abundance, distribution and dynamics of retrotransposable elements: similarities and differences. Cytogen Genome Res. 2005;110:426–40.
Article
CAS
Google Scholar
Xie D, Chen C, Ptaszek LM, Xiao S, Cao X, Fang F, et al. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res. 2010;20:804–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Warenfors M, Pereira V, Eyre-Walker A. Transposable elements: insertion pattern and impact on gene expression evolution in Hominids. Mol Biol Evol. 2010;27:1955–62.
Article
Google Scholar
Hollister JD, Smith LM, Guo Y, Ott F, Weigel D, Gaut BS. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci U S A. 2011;108:2322–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, et al. Doubling genome size without polyploidization: dynamics of retrotransposon-mediated genome expansions in Oryza australensis, a wild relative of rice. Genome Res. 2006;16:1262–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Amborella genome project. The Amborella genome and the evolution of flowering plants. Science. 2013;342:1241089.
Article
Google Scholar
Serra F, Becher V, Dopazo H. Neutral theory predicts the relative abundance and diversity of genetic elements in a broad array of eukaryotic genomes. PLoS ONE. 2013;8:6.
Google Scholar
Linquist S, Cotenie K, Elliott TA, Saylor B, Kremer SC, Gregory TR. Applying ecological models to communities of genetic elements: the case of Neutral Theory. Mol Ecol. 2015;24:3232–42.
Article
PubMed
Google Scholar
Keeley JE, Fotheringham CJ. Species–area relationships in Mediterranean climate plant communities. J Biogeogr. 2003;30:1629–57.
Article
Google Scholar
Whittaker RH. Dominance and diversity in land plant communties. Science. 1965;147:250–60.
Article
CAS
PubMed
Google Scholar
Whittaker RH. Evolution and measurement of species diversity. Taxon. 1972;21:213–51.
Article
Google Scholar
Nummelin M. Log-normal distribution of species abundances is not a universal indicator of rain forest disturbance. J Appl Ecol. 1998;35:454–7.
Article
Google Scholar
McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett. 2007;10:995–1015.
Article
PubMed
Google Scholar
Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, et al. Multiple paleopolypoidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol. 2008;25:2445–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peterson-Burch BD, Nettleton D, Voytas DF. Genomic neighborhoods for Arbidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol. 2004;5:R78.
Article
PubMed Central
PubMed
Google Scholar
Chapman MA, Leebens-Mack JH, Burke JM. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol Biol Evol. 2008;25:1260–73.
Article
CAS
PubMed
Google Scholar
Hutchinson GE. Homage to Santa Rosalia, or why are there so many kinds of animals? Am Nat. 1959;93:145–59.
Article
Google Scholar
Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006;16:1252–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buti M, Giordani T, Cattonaro F, Cossu RM, Pistelli L, Vukich M, et al. Temporal dynamics in the evolution of the sunflower genome as revealed by sequencing and annotation of three large genomic regions. Theor Appl Genet. 2011;5:779–91.
Article
Google Scholar
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, et al. Genomic repeat abundances contain phylogenetic signal. Syst Biol. 2015;64:112–26.
Article
PubMed Central
PubMed
Google Scholar
Mandel J, Dikow RB, Funk VA, Masalia R, Staton SE, Kozik A, et al. A target enrichment method for gathering phylogenetic information from hundreds of loci: an example from the Compositae. App Plant Sci. 2014;2:130085.
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Staton SE. Pairfq: sync paired-end FASTA/Q files and keep singleton reads. [https://github.com/sestaton/Pairfq].
Blondel VD, Guillaume J, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech. 2008;2008:P10008.
Article
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
PubMed Central
PubMed
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7.
Article
CAS
PubMed
Google Scholar
Staton SE, Burke JM. Transposome: annotation of transposable element families from unassembled sequence reads. Bioinformatics. 2015;31:1827–9.
Article
PubMed
Google Scholar
Hu H, Bandyopadhyay PK, Olivera BM, Yandell M. Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics. 2011;12:60.
Article
PubMed Central
CAS
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing. [http://www.R-project.org].
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. vegan: Community Ecology Package. R package version 2.0-7. [http://CRAN.R-project.org/package=vegan].
Le Rouzic A, Dupas S, Capy P. Genome ecosystem and transposable element species. Gene. 2007;390:214–20.
Article
PubMed
Google Scholar
Motomura I. A statistical treatment of associations. Jpn J Zool. 1932;44:379–83.
Google Scholar
Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac L, et al. caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 0.5. [http://CRAN.R-project.org/package=caper].
Blomberg SP, Garland Jr T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.
Article
PubMed
Google Scholar
Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15.
Article
Google Scholar
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.
Article
CAS
PubMed
Google Scholar