Cavalier-Smith T. Origins of the machinery of recombination and sex. Heredity (Edinb). 2002;88:125–41.
Article
CAS
Google Scholar
Zimmer C. On the origin of sexual reproduction. Science. 2009;324:1254–6.
Article
CAS
PubMed
Google Scholar
Goodenough U, Heitman J. Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol. 2014;6:a016154.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schurko AM, Logsdon JM. Using a meiosis detection toolkit to investigate ancient asexual “scandals” and the evolution of sex. BioEssays. 2008;30:579–89.
Article
CAS
PubMed
Google Scholar
Ramesh MA, Malik SB, Logsdon JM. A phylogenomic inventory of meiotic genes: Evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol. 2005;15:185–91.
CAS
PubMed
Google Scholar
Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One. 2008;3:e2879.
Article
PubMed Central
Google Scholar
Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A. 2011;108:13624–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140:631–42.
Article
CAS
PubMed
Google Scholar
Chi J, Mahé F, Loidl J, Logsdon J, Dunthorn M. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway. Mol Biol Evol. 2014;31:660–72.
Article
CAS
PubMed
Google Scholar
Carr M, Leadbeater BSC, Baldauf SL. Conserved meiotic genes point to sex in the choanoflagellates. J Eukaryot Microbiol. 2010;57:56–62.
Article
CAS
PubMed
Google Scholar
Chi J, Parrow MW, Dunthorn M. Cryptic sex in Symbiodinium (alveolata, dinoflagellata) is supported by an inventory of meiotic genes. J Eukaryot Microbiol. 2014;61:322–7.
Article
PubMed
Google Scholar
Field C, Behrenfeld M, Randerson J, Falkowski P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 1998;281:237–40.
Article
CAS
PubMed
Google Scholar
Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles. 1995;9:359.
Article
CAS
Google Scholar
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012;59:429–93.
Article
PubMed
PubMed Central
Google Scholar
Chepurnov VA, Mann DG, Sabbe K, Vyverman W. Experimental studies on sexual reproduction in diatoms. In: International Review of Cytology. Volume 237. San Diego, CA, USA: Academic; 2004. p. 91–154.
Google Scholar
Round FE, Crawford RM, Mann DG. The Diatoms: Biology and Morphology of the Genera. Cambridge: Cambridge University Press; 1990.
Google Scholar
Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science. 2004;306:79–86.
Article
CAS
PubMed
Google Scholar
Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.
Article
CAS
PubMed
Google Scholar
Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C. Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol. 1999;1:239–51.
Article
CAS
Google Scholar
Poulsen N, Chesley PM, Kröger N. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol. 2006;42:1059–65.
Article
Google Scholar
Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, et al. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene. 2007;406:23–35.
Article
CAS
PubMed
Google Scholar
Kooistra WHCF, Gersonde R, Medlin LK, Mann DG. The origin and evolution of the diatoms: Their adaptation to a planktonic existence. In: Falkowski PG, Knoll AH, editors. Evolution of primary producers in the sea/ed. by Paul G. Falkowski, Andrews H. Knoll Amsterdam ; Heidelberg[u.a.] : Elsevier, Academic Press. Burlington: Elsevier Academic Press; 2007. p. 207–49. Schmid 1988.
Google Scholar
Honda D, Shono T, Kimura K, Fujita S, Iseki M, Makino Y, et al. Homologs of the sexually induced gene 1 (sig1) product constitute the Stramenopile mastigonemes. Protist. 2007;158:77–88.
Article
CAS
PubMed
Google Scholar
Vanstechelman I, Sabbe K, Vyverman W, Vanormelingen P, Vuylsteke M. Linkage mapping identifies the sex determining region as a single locus in the pennate diatom Seminavis robusta. PLoS One. 2013;8:e60132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schurko AM, Logsdon JM, Eads BD. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evol Biol. 2009;9:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mlambo G, Coppens I, Kumar N. Aberrant sporogonic development of Dmc1 (a meiotic recombinase) deficient Plasmodium berghei parasites. PLoS One. 2012;7:e52480.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, et al. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J. 2006;48:206–16.
Article
CAS
PubMed
Google Scholar
Lindner K, Gregán J, Montgomery S, Kearsey SE. Essential role of MCM proteins in premeiotic DNA replication. Mol Biol Cell. 2002;13:435–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strunnikov AV, Jessberger R. Structural maintenance of chromosomes (SMC) proteins: Conserved molecular properties for multiple biological functions. Eur J Biochem. 1999;263:6–13.
Article
CAS
PubMed
Google Scholar
Prieto I, Pezzi N, Buesa JM, Kremer L, Barthelemy I, Carreiro C, et al. STAG2 and Rad21 mammalian mitotic cohesins are implicated in meiosis. EMBO Rep. 2002;3:543–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suwaki N, Klare K, Tarsounas M. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol. 2011;22:898–905.
Article
CAS
PubMed
Google Scholar
Acharya S, Foster PL, Brooks P, Fishel R. The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol Cell. 2003;12:233–46.
Article
CAS
PubMed
Google Scholar
Hanson SJ, Schurko AM, Hecox-Lea B, Mark Welch DB, Stelzer CP, Logsdon JM. Inventory and phylogenetic analysis of meiotic genes in monogonont rotifers. J Hered. 2013;104:357–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forche A, Alby K, Schaefer D, Johnson AD, Berman J, Bennett RJ. The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biol. 2008;6:1084–97.
Article
CAS
Google Scholar
Carpenter ML, Assaf ZJ, Gourguechon S, Cande WZ. Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis. J Cell Sci. 2012;125:2523–32.
CAS
PubMed
PubMed Central
Google Scholar
Von Dassow P, John U, Ogata H, Probert I, Bendif EM, Kegel JU, et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME J. 2015;9:1365–77.
Article
Google Scholar
Davidovich NA, Bates SS. Sexual reproduction in the pennate diatoms Pseudo-nitzschia multiseries and P. pseudodelicatissima (Bacillariophyceae). J Phycol. 1998;34:126–37.
Article
Google Scholar
D’Alelio D, Amato A, Luedeking A, Montresor M. Sexual and vegetative phases in the planktonic diatom Pseudo-nitzschia multistriata. Harmful Algae. 2009;8:225–32.
Article
Google Scholar
Keeney S. Spo11 and the formation of DNA double-strand breaks in meiosis. In: Egel R, Lankenau D-H, editors. Recombination and Meiosis. Volume 2. Berlin Heidelberg: Springer; 2008. p. 81–123.
Chapter
Google Scholar
Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997;88:375–84.
Article
CAS
PubMed
Google Scholar
Henry JM, Camahort R, Rice DA, Florens L, Swanson SK, Washburn MP, et al. Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Mol Cell Biol. 2006;26:2913–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao W, Saro D, Hammel M, Kwon Y, Xu Y, Rambo RP, et al. Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing. Nucleic Acids Res. 2014;42:906–17.
Article
CAS
PubMed
Google Scholar
Nishant KT, Chen C, Shinohara M, Shinohara A, Alani E. Genetic analysis of baker’s yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability. PLoS Genet. 2010;6:e1001083.
Article
PubMed
PubMed Central
CAS
Google Scholar
Snowden T, Acharya S, Butz C, Berardini M, Fishel R. hMSH4-hMSH5 recognizes Holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell. 2004;15:437–51.
Article
CAS
PubMed
Google Scholar
Lynn A, Soucek R, Börner GV. ZMM proteins during meiosis: Crossover artists at work. Chromosom Res. 2007;15:591–605.
Article
CAS
Google Scholar
Mercier R, Jolivet S, Vezon D, Huppe E, Chelysheva L, Giovanni M, et al. Two meiotic crossover classes cohabit in Arabidopsis: One is dependent on MER3, whereas the other one is not. Curr Biol. 2005;15:692–701.
Article
CAS
PubMed
Google Scholar
Sym M, Engebrecht JA, Roeder GS. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell. 1993;72:365–78.
Article
CAS
PubMed
Google Scholar
Rockmill B, Roeder GS. RED1: A yeast gene required for the segregation of chromosomes during the reductional division of meiosis. Proc Natl Acad Sci U S A. 1988;85:6057–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, et al. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLoS Genet. 2012;8:e1002507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watanabe Y, Nurse P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature. 1999;400:461–4.
Article
CAS
PubMed
Google Scholar
Bardhan A. Many functions of the meiotic cohesin. Chromosom Res. 2010;18:909–24.
Article
CAS
Google Scholar
Keeney S. Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol. 2001;52:1–53.
Article
CAS
PubMed
Google Scholar
Shinoharaa A, Shinohara M. Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenet Genome Res. 2004;107:201–7.
Article
CAS
Google Scholar
Kurzbauer M-T, Uanschou C, Chen D, Schlogelhofer P. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis. Plant Cell. 2012;24:2058–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdu U, González-Reyes A, Ghabrial A, Schüpbach T. The Drosophila spn-D gene encodes a RAD51C-like protein that is required exclusively during meiosis. Genetics. 2003;165:197–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takanami T, Mori A, Takahashi H, Horiuchi S, Higashitani A. Caenorhabditis elegans Ce-rdh-1/rad-51 functions after double-strand break formation of meiotic recombination. Chromosom Res. 2003;11:125–35.
Article
CAS
Google Scholar
Lin Z, Kong H, Nei M, Ma H. Origins and evolution of the RecA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci U S A. 2006;103:10328–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1:945–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowan BA, Oldenburg DJ, Bendich AJ. RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. J Exp Bot. 2010;61:2575–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerutti H, Osman M, Grandoni P, Jagendorf AT. A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci U S A. 1992;89:8068–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bendtsen JD, Nielsen H, Von Heijne G, Brunak S. Improved prediction of signal peptides : SignalP 3. 0. J Mol Biol. 2004;340:783–95.
Article
PubMed
CAS
Google Scholar
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chepurnov VA, Mann DG, Vyverman W, Sabbe K, Danielidis DB. Sexual reproduction, mating system, and protoplast dynamics of Seminavis (Bacillariophyceae). J Phycol. 2002;38:1004–19.
Article
Google Scholar
Perry J, Kleckner N, Börner GV. Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc Natl Acad Sci U S A. 2005;102:17594–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsubouchi T, Zhao H, Roeder GS. The Meiosis-specific Zip4 protein regulates crossover distribution by promoting synaptonemal complex formation together with Zip2. Dev Cell. 2006;10:809–19.
Article
CAS
PubMed
Google Scholar
Bähler J, Wyler T, Loidl J, Kohli J. Unusual nuclear structures in meiotic prophase of fission yeast: A cytological analysis. J Cell Biol. 1993;121:241–56.
Article
PubMed
Google Scholar
Loidl J, Scherthan H. Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. J Cell Sci. 2004;117(Pt 24):5791–801.
Article
CAS
PubMed
Google Scholar
Egel-Mitani M, Olson LW, Egel R. Meiosis in Aspergillus nidulans: Another example for lacking synaptonemal complexes in the absence of crossover interference. Hereditas. 2008;97:179–87.
Article
Google Scholar
Villeneuve AM, Hillers KJ. Whence meiosis? Cell. 2001;106:647–50.
Article
CAS
PubMed
Google Scholar
Strich R. Meiotic DNA Replication. Curr Top Dev Biol. 2004.
Xu H, Beasley M, Verschoor S, Inselman A, Handel MA, McKay MJ. A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep. 2004;5:378–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howard-Till RA, Lukaszewicz A, Novatchkova M, Loidl J. A single cohesin complex performs mitotic and meiotic functions in the protist Tetrahymena. PLoS Genet. 2013;9:e1003418.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malik SB, Ramesh MA, Hulstrand AM, Logsdon JM. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol Biol Evol. 2007;24:2827–41.
Article
CAS
PubMed
Google Scholar
Sprink T, Hartung F. The splicing fate of plant SPO11 genes. Front Plant Sci. 2014;5:e00214.
Article
Google Scholar
Worden AZ, Lee J-H, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science. 2009;324:268–72.
Article
CAS
PubMed
Google Scholar
Hartung F, Puchta H. Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants. Gene. 2001;271:81–6.
Article
CAS
PubMed
Google Scholar
Cloud V, Chan Y-L, Grubb J, Budke B, Bishop DK. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science. 2012;337:1222–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsubouchi H, Roeder GS. The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev Cell. 2003;5:915–25.
Article
CAS
PubMed
Google Scholar
Leu JY, Chua PR, Roeder GS. The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell. 1998;94:375–86.
Article
CAS
PubMed
Google Scholar
Chi P, San Filippo J, Sehorn MG, Petukhova GV, Sung P. Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase. Genes Dev. 2007;21:1747–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crismani W, Portemer V, Froger N, Chelysheva L, Horlow C, Vrielynck N, et al. MCM8 is required for a pathway of meiotic double-strand break repair independent of DMC1 in Arabidopsis thaliana. PLoS Genet. 2013;9:e1003165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanton HL, Radford SJ, McMahan S, Kearney HM, Ibrahim JG, Sekelsky J. REC, Drosophila MCM8, drives formation of meiotic crossovers. PLoS Genet. 2005;1:e40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lutzmann M, Grey C, Traver S, Ganier O, Maya-Mendoza A, Ranisavljevic N, et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol Cell. 2012;47:523–34.
Article
CAS
PubMed
Google Scholar
Park J, Long DT, Lee KY, Abbas T, Shibata E, Negishi M, et al. The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol Cell Biol. 2013;33:1632–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe K, Osakabe K, Nakayama S, Endo M, Tagiri A, Todoriki S, et al. Arabidopsis RAD51C gene is important for homologous recombination in meiosis and mitosis. Plant Physiol. 2005;139:896–908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bleuyard JY, White CI. The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis. EMBO J. 2004;23:439–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Von Wettstein D, Rasmussen SW, Holm PB. The synaptonemal complex in genetic segregation. Annu Rev Genet. 1984;18:331–413.
Article
Google Scholar
Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FCH. The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 2005;19:2488–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agarwal S, Roeder GS. Zip3 provides a link between recombination enzymes and synaptonemal complex proteins. Cell. 2000;102:245–55.
Article
CAS
PubMed
Google Scholar
Hoffmann ER, Borts RH. Meiotic recombination intermediates and mismatch repair proteins. Cytogenet Genome Res. 2004;107:232–48.
Article
CAS
PubMed
Google Scholar
De Vries FAT, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 2005;19:1376–89.
Article
PubMed
PubMed Central
CAS
Google Scholar
Osman K, Sanchez-Moran E, Higgins JD, Jones GH, Franklin FCH. Chromosome synapsis in Arabidopsis: Analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex. Chromosoma. 2006;115:212–9.
Article
CAS
PubMed
Google Scholar
Bhalla N, Wynne DJ, Jantsch V, Dernburg AF. ZHP-3 acts at crossovers to couple meiotic recombination with synaptonemal complex disassembly and bivalent formation in C. elegans. PLoS Genet. 2008;4:e1000235.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adelman CA, Petrini JHJ. ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over. PLoS Genet. 2008;4:e1000042.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L, Lemhemdi A, et al. The Arabidopsis HEI10 is a new ZMM protein related to Zip3. PLoS Genet. 2012;8:e1002799.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chelysheva L, Gendrot G, Vezon D, Doutriaux M-P, Mercier R, Grelon M. Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana. PLoS Genet. 2007;3:e83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mochizuki K, Novatchkova M, Loidl J. DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena. J Cell Sci. 2008;121(Pt 13):2148–58.
Article
CAS
PubMed
Google Scholar
Mann DG, Stickle AJ. Meiosis, nuclear cyclosis, and auxospore formation in Navicula sensu stricto (Bacillariophyceae). Br Phycol J. 1989;24:167–81.
Article
Google Scholar
Manton I, Kowallik K, Von Stosch HA. Observations on the fine structure and development of the spindle at mitosis and meiosis in a marine centric diatom (Lithodesmium undulatum). I. Preliminary survey of mitosis in spermatogonia. J Microsc. 1969;89:295–320.
Article
CAS
PubMed
Google Scholar
Drum RW. Electron microscope observations of diatoms. Österreichische Bot Zeitschrift. 1969;116:321–30.
Article
Google Scholar
Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996;10:1433–42.
Article
CAS
PubMed
Google Scholar
Eisen JA. A phylogenomic study of the MutS family of proteins. Nucleic Acids Res. 1998;26:4291–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higgins JD, Armstrong SJ, Franklin FCH, Jones GH. The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: Evidence for two classes of recombination in Arabidopsis. Genes Dev. 2004;18:2557–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
De los Santos T, Hunter N, Lee C, Larkin B, Loidl J, Hollingsworth NM. The MUS81/MMS4 endonuclease acts independently of double-holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics. 2003;164:81–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18:85–98.
Article
CAS
PubMed
Google Scholar
Srivatsan A, Bowen N, Kolodner RD. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex. J Biol Chem. 2014;289:9352–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marti TM, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways. J Cell Physiol. 2002;191:28–41.
Article
CAS
PubMed
Google Scholar
Amato A. Diatom reproductive biology: Living in a crystal cage. Int J Plant Reprod Biol. 2010;2:1–10.
Google Scholar
Mizuno M. Evolution of centric diatoms inferred from patterns of oogenesis and spermatogenesis. Phycol Res. 2008;56:156–65.
Article
CAS
Google Scholar
Flot JF, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EG, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 2013;500:453–7.
Article
CAS
PubMed
Google Scholar
Guillard RRL. Culture of phytoplankton for feeding marine invertebrates. In Smith W.L. & Chanley MH. (Eds). Culture of Marine Invertebrate Animals. New York: Plenum Press; 1975. pp. 29–60.
Chapter
Google Scholar
Van Bel M, Proost S, Van Neste C, Deforce D, Van de Peer Y, Vandepoele K. TRAPID: An efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biol. 2013;14:R134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillard J, Devos V, Huysman MJJ, De Veylder L, D’Hondt S, Martens C, et al. Physiological and transcriptomic evidence for a close coupling between chloroplast ontogeny and cell cycle progression in the pennate diatom Seminavis robusta. Plant Physiol. 2008;148:1394–411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Howe EA, Sinha R, Schlauch D, Quackenbush J. RNA-Seq analysis in MeV. Bioinformatics. 2011;27:3209–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
Article
CAS
PubMed
Google Scholar
Adelfi MG, Borra M, Sanges R, Montresor M, Fontana A, Ferrante MI. Selection and validation of reference genes for qPCR analysis in the pennate diatoms Pseudo-nitzschia multistriata and P. arenysensis. J Exp Mar Bio Ecol. 2014;451:74–81.
Article
CAS
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36.
Article
PubMed
PubMed Central
Google Scholar
Matsuzaki K, Shinohara A, Shinohara M. Forkhead-associated domain of yeast Xrs2, a homolog of human Nbs1, promotes nonhomologous end joining through interaction with a ligase IV partner protein, Lif1. Genetics. 2008;179:213–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagawa T, Kolodner RD. Saccharomyces cerevisiae Mer3 is a DNA helicase involved in meiotic crossing over. Mol Cell Biol. 2002;22:3281–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crismani W, Girard C, Froger N, Pradillo M, Santos JL, Chelysheva L, et al. FANCM limits meiotic crossovers. Science. 2012;336:1588–90.
Article
CAS
PubMed
Google Scholar
Kikuchi K, Taniguchi Y, Hatanaka A, Sonoda E, Hochegger H, Adachi N, et al. Fen-1 facilitates homologous recombination by removing divergent sequences at DNA break ends. Mol Cell Biol. 2005;25:6948–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tishkoff DX, Boerger AL, Bertrand P, Filosi N, Gaida GM, Kane MF, et al. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A. 1997;94:7487–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duxin JP, Dao B, Martinsson P, Rajala N, Guittat L, Campbell JL, et al. Human Dna2 is a nuclear and mitochondrial DNA maintenance protein. Mol Cell Biol. 2009;29:4274–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong B, Li S, Ai JS, Yin S, Ouyang YC, Sun SC, et al. BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes. Biol Reprod. 2008;79:718–26.
Article
CAS
PubMed
Google Scholar
Badie S, Escandell JM, Bouwman P, Carlos AR, Thanasoula M, Gallardo MM, et al. BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping. Nat Struct Mol Biol. 2010;17:1461–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun. 2012;3:686.
Article
PubMed
CAS
Google Scholar
Schwarzacher T. Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. J Exp Bot. 2003;54:11–23.
Article
CAS
PubMed
Google Scholar
Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FCH. Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol. 2011;190:523–44.
Article
CAS
PubMed
Google Scholar
Luo Q, Li Y, Shen Y, Cheng Z. Ten years of gene discovery for meiotic event control in rice. J Genet Genomics. 2014;41:125–37.
Article
PubMed
Google Scholar
Baudat F, Imai Y, de Massy B. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet. 2013;14:794–806.
Article
CAS
PubMed
Google Scholar
Andrews J, Bouffard GG, Cheadle C, Lü J, Becker KG, Oliver B. Gene discovery using computational and microarray analysis of transcription in the Drosophila melanogaster testis. Genome Res. 2000;10:2030–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Muse T, Boulton SJ. Meiotic recombination in Caenorhabditis elegans. Chromosom Res. 2007;15:607–21.
Article
CAS
Google Scholar
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2012;76:1–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shodhan A, Lukaszewicz A, Novatchkova M, Loidl J. Msh4 and Msh5 function in SC-independent chiasma formation during the streamlined meiosis of Tetrahymena. Genetics. 2014;198:983–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howard-Till RA, Lukaszewicz A, Loidl J. The recombinases Rad51 and Dmc1 play distinct roles in DNA break repair and recombination partner choice in the meiosis of Tetrahymena. PLoS Genet. 2011;7:e1001359.
Article
CAS
PubMed
PubMed Central
Google Scholar