Hsu PS, Kurita S, Yu ZZ, Lin JZ. Synopsis of the genus Lycoris (Amaryllidaceae). SIDA. 1994;16:301–31.
Google Scholar
Howes MJ, Houghton PJ. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav. 2003;75:513–27.
Article
CAS
PubMed
Google Scholar
Song JH, Zhang L, Song Y. Alkaloids from Lycoris aurea and their cytotoxicities against the head and neck aquamous cell carcinoma. Fitoterapia. 2014;95:121–6.
Article
CAS
PubMed
Google Scholar
Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep. 2009;26:363–81.
Article
CAS
PubMed
Google Scholar
Son M, Kim A, Lee J, Park CH, Heo JC, Lee HJ, et al. Ethanol extract of Lycoris radiata induces cell death in B16F10 melanoma via p38-mediated AP-1 activation. Oncol Rep. 2010;24:473–8.
PubMed
Google Scholar
Bores GM, Huger FP, Petko W, Mutlib AE, Camacho F, Rush DK, et al. Pharmacological evaluation of novel Alzheimer’s disease therapeutics: acetylcholinesterase inhibitors related to galanthamine. J Pharmacol Exp Ther. 1996;277:728–38.
CAS
PubMed
Google Scholar
Lilienfeld S. Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev. 2002;8:159–76.
Article
CAS
PubMed
Google Scholar
Marco L, do Carmo Carreiras M. Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Pat CNS Drug Discov. 2006;1:105–11.
Article
CAS
PubMed
Google Scholar
Li Y, Liu J, Tang LJ, Shi YW, Ren W, Hu WX. Apoptosis induced by lycorine in KM3 cells is associated with the G0/G1 cell cycle arrest. Oncol Rep. 2007;17:377–84.
CAS
PubMed
Google Scholar
Lamoral-Theys D, Decaestecker C, Mathieu V, Dubois J, Kornienko A, Kiss R, et al. Lycorine and its derivatives for anticancer drug design. Mini Rev Med Chem. 2010;10:41–50.
Article
CAS
PubMed
Google Scholar
Eichhorn J, Takada T, Kita Y, Zenk MH. Biosynthesis of the Amaryllidaceae alkaloid galanthamine. Phytochemistry. 1998;49:1037–47.
Article
CAS
Google Scholar
Bastida J, Berkov S, Torras L, Pigni NB, de Andrade JP, Martinez V, et al. Chemical and biological aspects of Amaryllidaceae alkaloids. In: Muñoz-Torrero D, editor. Recent Advances in Pharmaceutical Sciences. Kerala: Transworld Research Network; 2011. p. 65–100.
Google Scholar
Colque R, Viladomat F, Bastida J, Codina C. Improved production of galanthamine and related alkaloids by methyl jasmonate in Narcissus confuses shoot-clumps. Planta Med. 2004;70:1180–8.
Article
CAS
PubMed
Google Scholar
Mu HM, Wang R, Li XD, Jiang YM, Wang CY, Quan JP, et al. Effect of abiotic and biotic elicitors on growth and alkaloid accumulation of Lycoris chinensis seedlings. Z Naturforsch C. 2009;64:541–50.
Article
CAS
PubMed
Google Scholar
Ptak A, El Tahchy A, Wyzgolik G, Henry M, Laurain-Mattar D. Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tissue Organ Cult. 2010;102:61–7.
Article
CAS
Google Scholar
Jiang Y, Xia N, Li X, Shen W, Liang L, Wang C, et al. Molecular cloning and characterization of a phenylalanine ammonia-lyase gene (LrPAL) from Lycoris radiata. Mol Biol Rep. 2011;38:1935–40.
Article
CAS
PubMed
Google Scholar
Jiang Y, Xia B, Liang L, Li X, Xu S, Peng F, et al. Molecular and analysis of a phenylalanine ammonia-lyase gene (LrPAL2) from Lycoris radiata. Mol Biol Rep. 2013;40:2293–300.
Article
CAS
PubMed
Google Scholar
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 2013;111:1021–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot. 2007;100:681–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gundlach H, Müller M, Kutchan TM, Zenk MH. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A. 1992;89:2389–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jennewein S, Wildung MR, Chau M, Walker K, Croteau R. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in taxol biosynthesis. Proc Natl Acad Sci U S A. 2004;101:9149–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Jones AD, Howe GA. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett. 2006;580:2540–6.
Article
CAS
PubMed
Google Scholar
De Geyter N, Gholami A, Goormachtig S, Goossens A. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci. 2012;17:349–59.
Article
PubMed
Google Scholar
Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol. 2009;25:21–44.
Article
PubMed
Google Scholar
Weiberg A, Wang M, Bellinger M, Jin H. Small RNAs: a new paradigm in plant-micobe interactions. Annu Rev Phytopathol. 2014;52:495–516.
Article
CAS
PubMed
Google Scholar
Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, et al. Criteria for annotation of plant MicroRNAs. Plant Cell. 2008;20:3186–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Reichel M, Li Y, Millar AA. The functional scope of plant microRNA-mediated silencing. Trends Plant Sci. 2014;19:750–6.
Article
CAS
PubMed
Google Scholar
Liang G, Yang F, Yu D. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J. 2010;62:1046–57.
CAS
PubMed
Google Scholar
Ni Z, Hu Z, Jiang Q, Zhang H. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol. 2013;82:113–29.
Article
CAS
PubMed
Google Scholar
Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol. 2013;161:1375–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thiebaut F, Rojas CA, Almeida KL, Grativol C, Domiciano GC, Lamb CR, et al. Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ. 2012;35:502–12.
Article
CAS
PubMed
Google Scholar
Guan Q, Lu X, Zeng H, Zhang Y, Zhu J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J. 2013;74:840–51.
Article
CAS
PubMed
Google Scholar
Zhang LW, Song JB, Shu XX, Zhang Y, Yang ZM. miR395 is involved in detoxification of cadmium in Brassica napus. J Hazard Mater. 2013;250–251:204–11.
Article
PubMed
Google Scholar
Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol. 2014;164:1077–92.
Article
CAS
PubMed
Google Scholar
Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell. 2011;23:1512–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng DW, Zhang C, Miller M, Palmer G, Whiteley M, Tholl D, et al. cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell. 2011;23:1729–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu D, Pan X, Wilson IW, Li F, Liu M, Teng W, et al. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene. 2009;436:37–44.
Article
CAS
PubMed
Google Scholar
Zhang B, Xie D, Jin Z. Global analysis of non-coding small RNAs in Arabidopsis in response to jasmonate treatment by deep sequencing technology. J Integr Plant Biol. 2012;54:73–86.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang R, Xu S, Jiang Y, Jiang J, Li X, Liang L, et al. De novo sequence assembly and characterization of Lycoris aurea transcriptome using GS FLX titanium platform of 454 pyrosequencing. PLoS One. 2013;8:e60449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao DC, Yang L, Xiao PG, Liu M. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol Plant. 2012;146:388–403.
Article
CAS
PubMed
Google Scholar
Wu B, Wang M, Ma Y, Yuan L, Lu S. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng. PLoS One. 2012;7:e44385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, et al. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res. 2008;18:571–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010;62:960–76.
CAS
PubMed
Google Scholar
Liu F, Wang W, Sun X, Liang Z, Wang F. Conserved and novel heat stress responsive microRNAs were identified by deep sequencing in Saccharina japonica (Laminariales, Phaeophyta). Plant Cell Environ. 2015;38:1357–67.
Article
CAS
PubMed
Google Scholar
Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Farrinelli L, Hemerly AS, et al. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One. 2013;8:e59423.
Article
PubMed
PubMed Central
Google Scholar
Zhang R, Marshall D, Bryan GJ, Hornyik C. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS One. 2013;8:e57233.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong DH, Park S, Zhai J, Gurazada SG, De Paoli E, Meyers BC, et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell. 2011;23:4185–207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I, et al. High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res. 2012;22:163–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jain M, Chevala VVSN, Garg R. Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. J Exp Bot. 2014;65:5945–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nozawa M, Miura S, Nei M. Origins and evolution of microRNA genes in plant species. Genome Biol Evol. 2012;4:230–9.
Article
PubMed
PubMed Central
Google Scholar
Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature. 2010;465:617–21.
Article
CAS
PubMed
Google Scholar
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Gene Dev. 2006;20:3407–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell. 2008;133:116–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, et al. DNA methylation mediated by a microRNA pathway. Mol Cell. 2010;38:465–75.
Article
CAS
PubMed
Google Scholar
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2:E104.
Article
PubMed
PubMed Central
Google Scholar
Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell. 2011;23:431–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra AK, Agarwal S, Jain CK, Rani V. High GC content: critical parameter for predicting stress regulated miRNAs in Arabidopsis thaliana. Bioinformation. 2009;4:151–4.
Article
PubMed
PubMed Central
Google Scholar
Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families through duplication events. Genome Res. 2006;16:510–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li A, Mao L. Evolution of plant microRNA gene families. Cell Res. 2007;17:212–8.
CAS
PubMed
Google Scholar
Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18:2051–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Jiang J, Song A, Chen S, Shan H, Luo H, et al. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398. BMC Biol. 2013;11:121.
Article
PubMed
PubMed Central
Google Scholar
Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LA. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 2009;182:175–87.
Article
CAS
PubMed
Google Scholar
Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell. 2013;25:2907–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to 17 salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol. 2015;169:576–93.
Article
PubMed
PubMed Central
Google Scholar
Liu Q, Hu H, Zhu L, Li R, Feng Y, Zhang L, et al. Involvement of miR528 in the regulation of arsenite tolerance in rice (Oryza sativa L.). J Agric Food Chem. 2015;63:8849–61.
Article
CAS
PubMed
Google Scholar
Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 2009;138:738–49.
Article
CAS
PubMed
Google Scholar
Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell. 2009;138:750–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25:2383–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, et al. Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nature Biotechnol. 2008;26:941–6.
Article
CAS
Google Scholar
Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, et al. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot. 2013;64:4271–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ, Sun J, et al. Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics. 2012;13:421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutierrez L, Mongelard G, Floková K, Pacurar DI, Novák O, Staswick P, et al. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell. 2012;24:2515–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, et al. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell. 2002;14:1919–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takos AM, Rook F. Towards a molecular understanding of the biosynthesis of Amaryllidaceae alkaloids in support of their expanding medical use. Int J Mol Sci. 2013;14:11713–41.
Article
PubMed
PubMed Central
Google Scholar
Ikezawa N, Iwasa K, Sato F. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C–C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem. 2008;283:8810–21.
Article
CAS
PubMed
Google Scholar
Gesell A, Rolf M, Ziegler J, Diaz Chavez ML, Huang FC, Kutchan TM. CYP719B1 is salutaridine synthase, the C–C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J Biol Chem. 2009;284:24432–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.
Article
CAS
PubMed
Google Scholar
Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets. Trends Plant Sci. 2005;13:343–9.
Article
Google Scholar
Axtell MJ, Bartel DP. Antiquity of microRNAs and their targets in land plants. Plant Cell. 2005;17:1658–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25:1966–7.
Article
CAS
PubMed
Google Scholar
Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, et al. Identification of microRNAs and other small egulatory RNAs using cDNA library sequencing. Methods. 2008;44:3–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.
Article
PubMed
Google Scholar
Deng W, Wang Y, Liu Z, Cheng H, Xue Y. HemI: a toolkit for illustrating heatmaps. PLoS One. 2014;9:e111988.
Article
PubMed
PubMed Central
Google Scholar
Eldem V, Çelikkol Akçay U, Ozhuner E, Bakır Y, Uranbey S, Unver T. Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One. 2012;7:e50298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol. 2008;18:758–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brousse C, Liu Q, Beauclair L, Deremetz A, Axtell MJ, Bouché N. A non-canonical plant microRNA target site. Nucleic Acids Res. 2014;42:5270–9.
Article
CAS
PubMed
PubMed Central
Google Scholar