McCormick SP, Stanley AM, Stover NA, Alexander NJ. Trichothecenes: from simple to complex mycotoxins. Toxins. 2011;3(7):802–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pestka JJ. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol. 2010;84(9):663–79.
Article
CAS
PubMed
Google Scholar
Schwenk S, Altmayer B, Eichhorn KW. Significance of toxic metabolites of the fungus trichothecium roseum link ex Fr. For viticulture. Z Lebensm Unters Forsch. 1989;188(6):527–30.
Article
CAS
PubMed
Google Scholar
Barbacid M, Fresno M, Vazquez D. Inhibitors of polypeptide elongation on yeast polysomes. J Antibiot. 1975;28(6):453–62.
Article
CAS
PubMed
Google Scholar
Garreau de Loubresse N, Prokhorova I, Holtkamp W, Rodnina MV, Yusupova G, Yusupov M. Structural basis for the inhibition of the eukaryotic ribosome. Nature. 2014;513(7519):517–22.
Article
CAS
PubMed
Google Scholar
Bai GH, Desjardins AE, Plattner RD. Deoxynivalenol-nonproducing fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia. 2002;153(2):91–8.
Article
CAS
PubMed
Google Scholar
Boenisch MJ, Schafer W. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol. 2011;11:110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu F, Groopman JD, Pestka JJ. Public health impacts of foodborne mycotoxins. Annu Rev Food Sci Technol. 2014;5:351–72.
Article
CAS
PubMed
Google Scholar
Zhou HR, He K, Landgraf J, Pan X, Pestka JJ. Direct activation of ribosome-associated double-stranded RNA-dependent protein kinase (PKR) by deoxynivalenol, anisomycin and ricin: a new model for ribotoxic stress response induction. Toxins. 2014;6(12):3406–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arunachalam C, Doohan FM. Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett. 2013;217(2):149–58.
Article
CAS
PubMed
Google Scholar
Buerstmayr H, Ban T, Anderson JA. QTL mapping and marker-assisted selection for fusarium head blight resistance in wheat: a review. Plant Breed. 2009;128(1):1–26.
Article
CAS
Google Scholar
Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M. Molecular mapping of QTLs for fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. TAG Theoretical and applied genetics Theoretische und angewandte Genetik. 2003;107(3):503–8.
Lemmens M, Scholz U, Berthiller F, Dall'Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for fusarium head blight resistance in wheat. Mol Plant-Microbe Interact : MPMI. 2005;18(12):1318–24.
Horevaj P, Brown-Guedira G, Milus EA. Resistance in winter wheat lines to deoxynivalenol applied into florets at flowering stage and tolerance to phytotoxic effects on yield. Plant Pathol. 2012;61(5):925–33.
Article
CAS
Google Scholar
Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against fusarium graminearum. PLoS One. 2012;7(7), e40695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gunnaiah R, Kushalappa AC. Metabolomics deciphers the host resistance mechanisms in wheat cultivar sumai-3, against trichothecene producing and non-producing isolates of fusarium graminearum. Plant Physiol Biochem : PPB/Societe francaise de physiologie vegetale. 2014;83:40–50.
Kluger B, Bueschl C, Lemmens M, Michlmayr H, Malachova A, Koutnik A, Maloku I, Berthiller F, Adam G, Krska R, et al. Biotransformation of the mycotoxin deoxynivalenol in fusarium resistant and susceptible near isogenic wheat lines. PLoS One. 2015;10(3), e0119656.
Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C, Adam G. Detoxification of the fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem. 2003;278(48):47905–14.
Rohlfs M, Churchill AC. Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol : FG & B. 2011;48(1):23–34.
Article
CAS
Google Scholar
Fried HM, Warner JR. Cloning of yeast gene for trichodermin resistance and ribosomal protein L3. Proc Natl Acad Sci U S A. 1981;78(1):238–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cundliffe E, Cannon M, Davies J. Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Proc Natl Acad Sci U S A. 1974;71(1):30–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Sci (New York, NY). 2008;320(5874):362–5.
Pierce SE, Davis RW, Nislow C, Giaever G. Chemogenomic approaches to elucidation of gene function and genetic pathways. Methods Mol Biol (Clifton, NJ). 2009;548:115–43.
Article
CAS
Google Scholar
Roemer T, Davies J, Giaever G, Nislow C. Bugs, drugs and chemical genomics. Nat Chem Biol. 2012;8(1):46–56.
Article
CAS
Google Scholar
Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics. 2014;197(2):451–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nislow C, Lee AY, Allen PL, Giaever G, Smith A, Gebbia M, Stodieck LS, Hammond JS, Birdsall HH, Hammond TG. Genes required for survival in microgravity revealed by genome-wide yeast deletion collections cultured during spaceflight. BioMed res int. 2015;2015:976458.
McLaughlin JE, Bin-Umer MA, Tortora A, Mendez N, McCormick S, Tumer NE. A genome-wide screen in saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A. 2009;106(51):21883–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bin-Umer MA, McLaughlin JE, Butterly MS, McCormick S, Tumer NE. Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci U S A. 2014;111(32):11798–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moye-Rowley WS. Retrograde regulation of multidrug resistance in saccharomyces cerevisiae. Gene. 2005;354:15–21.
Article
CAS
PubMed
Google Scholar
Katzmann DJ, Hallstrom TC, Mahe Y, Moye-Rowley WS. Multiple Pdr1p/Pdr3p binding sites are essential for normal expression of the ATP binding cassette transporter protein-encoding gene PDR5. J Biol Chem. 1996;271(38):23049–54.
Article
CAS
PubMed
Google Scholar
Carvajal E, van den Hazel HB, Cybularz-Kolaczkowska A, Balzi E, Goffeau A. Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes. Mol Gen Genet : MGG. 1997;256(4):406–15.
Article
CAS
PubMed
Google Scholar
Mamnun YM, Schuller C, Kuchler K. Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase. FEBS Lett. 2004;559(1–3):111–7.
Article
CAS
PubMed
Google Scholar
Paul S, Schmidt JA, Moye-Rowley WS. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot Cell. 2011;10(2):187–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki T, Iwahashi Y. Comprehensive gene expression analysis of type B trichothecenes. J Agric Food Chem. 2012;60(37):9519–27.
Article
CAS
PubMed
Google Scholar
Tong AH, Boone C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol (Clifton, NJ). 2006;313:171–92.
CAS
Google Scholar
Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol. 2004;22(1):62–9.
Dixon SJ, Costanzo M, Baryshnikova A, Andrews B, Boone C. Systematic mapping of genetic interaction networks. Annu Rev Genet. 2009;43:601–25.
Article
CAS
PubMed
Google Scholar
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, et al. The genetic landscape of a cell. Sci (New York, NY). 2010;327(5964):425–31.
Potapov AP, Voss N, Sasse N, Wingender E. Topology of mammalian transcription networks. Genome inform Int Conf Genome Inform. 2005;16(2):270–8.
CAS
Google Scholar
Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998;393(6684):440–2.
Article
CAS
PubMed
Google Scholar
Trucco E. A note on the information content of graphs. Bull Math Biol. 1956;18(2):129–35.
Google Scholar
Rashevsky N. Life, information theory, and topology. Bull Math Biophys. 1955;17:229–35.
Article
CAS
Google Scholar
Demer M. Information processing in complex networks: graph entropy and information functionals. Appl Math Comput. 2008;201(1):82–94.
Google Scholar
Oakes ML, Siddiqi I, French SL, Vu L, Sato M, Aris JP, Beyer AL, Nomura M. Role of histone deacetylase Rpd3 in regulating rRNA gene transcription and nucleolar structure in yeast. Mol Cell Biol. 2006;26(10):3889–901.
Yoshida K, Bacal J, Desmarais D, Padioleau I, Tsaponina O, Chabes A, Pantesco V, Dubois E, Parrinello H, Skrzypczak M, et al. The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast. Mol Cell. 2014;54(4):691–7.
Meskauskas A, Baxter JL, Carr EA, Yasenchak J, Gallagher JE, Baserga SJ, Dinman JD. Delayed rRNA processing results in significant ribosome biogenesis and functional defects. Mol Cell Biol. 2003;23(5):1602–13.
Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005;123(4):581–92.
Zhang Y, Anderson SJ, French SL, Sikes ML, Viktorovskaya OV, Huband J, Holcomb K, Hartman JLt, Beyer AL, Schneider DA. The SWI/SNF chromatin remodeling complex influences transcription by RNA polymerase I in saccharomyces cerevisiae. PLoS One. 2013;8(2), e56793.
Dror V, Winston F. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in saccharomyces cerevisiae. Mol Cell Biol. 2004;24(18):8227–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laribee RN, Hosni-Ahmed A, Workman JJ, Chen H. Ccr4-not regulates RNA polymerase I transcription and couples nutrient signaling to the control of ribosomal RNA biogenesis. PLoS Genet. 2015;11(3), e1005113.
Article
PubMed
PubMed Central
Google Scholar
Pujol-Carrion N, Petkova MI, Serrano L, de la Torre-Ruiz MA. The MAP kinase Slt2 is involved in vacuolar function and actin remodeling in saccharomyces cerevisiae mutants affected by endogenous oxidative stress. Appl Environ Microbiol. 2013;79(20):6459–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Moir RD, Sethy-Coraci IK, Warner JR, Willis IM. Repression of ribosome and tRNA synthesis in secretion-defective cells is signaled by a novel branch of the cell integrity pathway. Mol Cell Biol. 2000;20(11):3843–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ando A, Nakamura T, Murata Y, Takagi H, Shima J. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of saccharomyces cerevisiae deletion strains. FEMS Yeast Res. 2007;7(2):244–53.
Article
CAS
PubMed
Google Scholar
Mira NP, Palma M, Guerreiro JF, Sa-Correia I. Genome-wide identification of saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact. 2010;9:79.
Article
PubMed
PubMed Central
Google Scholar
Weaver AC, See MT, Kim SW. Protective effect of two yeast based feed additives on pigs chronically exposed to deoxynivalenol and zearalenone. Toxins. 2014;6(12):3336–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avantaggiato G, Havenaar R, Visconti A. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food Chem Toxicol : int j pubBr Ind Biol Res Assoc. 2004;42(5):817–24.
Article
CAS
Google Scholar
Yiannikouris A, Andre G, Poughon L, Francois J, Dussap CG, Jeminet G, Bertin G, Jouany JP. Chemical and conformational study of the interactions involved in mycotoxin complexation with beta-D-glucans. Biomacromolecules. 2006;7(4):1147–55.
Cavret S, Laurent N, Videmann B, Mazallon M, Lecoeur S. Assessment of deoxynivalenol (DON) adsorbents and characterisation of their efficacy using complementary in vitro tests. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010;27(1):43–53.
Article
CAS
PubMed
Google Scholar
Brewster JL, Gustin MC. Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast. 1994;10(4):425–39.
Article
CAS
PubMed
Google Scholar
Mizuta K, Warner JR. Continued functioning of the secretory pathway is essential for ribosome synthesis. Mol Cell Biol. 1994;14(4):2493–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni L, Snyder M. A genomic study of the bipolar bud site selection pattern in saccharomyces cerevisiae. Mol Biol Cell. 2001;12(7):2147–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trotter EW, Rand JD, Vickerstaff J, Grant CM. The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant. Biochem J. 2008;412(1):73–80.
Article
CAS
PubMed
Google Scholar
Singh RK, Gonzalez M, Kabbaj MH, Gunjan A. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast saccharomyces cerevisiae. PLoS One. 2012;7(5), e36295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duttler S, Pechmann S, Frydman J. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol Cell. 2013;50(3):379–93.
Article
CAS
PubMed
Google Scholar
Saito K, Horikawa W, Ito K. Inhibiting K63 polyubiquitination abolishes no-go type stalled translation surveillance in saccharomyces cerevisiae. PLoS Genet. 2015;11(4), e1005197.
Article
PubMed
PubMed Central
Google Scholar
Lee SD, Moore CL. Efficient mRNA polyadenylation requires a ubiquitin-like domain, a zinc knuckle, and a RING finger domain, all contained in the Mpe1 protein. Mol Cell Biol. 2014;34(21):3955–67.
Article
PubMed
PubMed Central
Google Scholar
Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell. 2012;151(5):1042–54.
Comyn SA, Chan GT, Mayor T. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J Proteomics. 2014;100:92–101.
Article
CAS
PubMed
Google Scholar
Crowder JJ, Geigges M, Gibson RT, Fults ES, Buchanan BW, Sachs N, Schink A, Kreft SG, Rubenstein EM. Rkr1/Ltn1 ubiquitin ligase-mediated degradation of translationally stalled endoplasmic reticulum proteins. J Biol Chem. 2015;290(30):18454–66.
Bidou L, Allamand V, Rousset JP, Namy O. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med. 2012;18(11):679–88.
Article
CAS
PubMed
Google Scholar
Kuroha K, Akamatsu M, Dimitrova L, Ito T, Kato Y, Shirahige K, Inada T. Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. EMBO Rep. 2010;11(12):956–61.
Wolf AS, Grayhack EJ. Asc1, homolog of human RACK1, prevents frameshifting in yeast by ribosomes stalled at CGA codon repeats. RNA. 2015;21(5):935–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letzring DP, Wolf AS, Brule CE, Grayhack EJ. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA. 2013;19(9):1208–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rachfall N, Schmitt K, Bandau S, Smolinski N, Ehrenreich A, Valerius O, Braus GH. RACK1/Asc1p, a ribosomal node in cellular signaling. Mol Cell Proteomics : MCP. 2013;12(1):87–105.
Valerius O, Kleinschmidt M, Rachfall N, Schulze F, Lopez Marin S, Hoppert M, Streckfuss-Bomeke K, Fischer C, Braus GH. The saccharomyces homolog of mammalian RACK1, Cpc2/Asc1p, is required for FLO11-dependent adhesive growth and dimorphism. Mol Cell Proteomics : MCP. 2007;6(11):1968–79.
Gupta R, Kus B, Fladd C, Wasmuth J, Tonikian R, Sidhu S, Krogan NJ, Parkinson J, Rotin D. Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol. 2007;3:116.
Belgareh-Touze N, Leon S, Erpapazoglou Z, Stawiecka-Mirota M, Urban-Grimal D, Haguenauer-Tsapis R. Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem Soc Trans. 2008;36(Pt 5):791–6.
Article
CAS
PubMed
Google Scholar
Harrison JC, Bardes ES, Ohya Y, Lew DJ. A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nat Cell Biol. 2001;3(4):417–20.
Article
CAS
PubMed
Google Scholar
O'Duibhir E, Lijnzaad P, Benschop JJ, Lenstra TL, van Leenen D, Groot Koerkamp MJ, Margaritis T, Brok MO, Kemmeren P, Holstege FC. Cell cycle population effects in perturbation studies. Mol Syst Biol. 2014;10:732.
Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999;24(11):437–40.
Article
CAS
PubMed
Google Scholar
Josse L, Li X, Coker RD, Gourlay CW, Evans IH. Transcriptomic and phenotypic analysis of the effects of T-2 toxin on saccharomyces cerevisiae: evidence of mitochondrial involvement. FEMS Yeast Res. 2011;11(1):133–50.
Article
CAS
PubMed
Google Scholar
Iwahashi Y, Kitagawa E, Iwahashi H. Analysis of mechanisms of T-2 toxin toxicity using yeast DNA microarrays. Int J Mol Sci. 2008;9(12):2585–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katika MR, Hendriksen PJ, van Loveren H, Peijnenburg Ad ACM. Characterization of the modes of action of deoxynivalenol (DON) in the human jurkat T-cell line. J Immunotoxicol. 2015;12(3):206–16.
Nussbaumer T, Warth B, Sharma S, Ametz C, Bueschl C, Parich A, Pfeifer M, Siegwart G, Steiner B, Lemmens M et al. Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to Fusarium graminearum. 83: G3 (Bethesda). 2015;4;5(12):2579-92.
Boddu J, Cho S, Muehlbauer GJ. Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant Microbe Interact. 2007;20(11):1364–75.
Article
CAS
PubMed
Google Scholar
Delaveau T, Delahodde A, Carvajal E, Subik J, Jacq C. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon. Mol Gen Genet : MGG. 1994;244(5):501–11.
Article
CAS
PubMed
Google Scholar
Mahe Y, Parle-McDermott A, Nourani A, Delahodde A, Lamprecht A, Kuchler K. The ATP-binding cassette multidrug transporter Snq2 of saccharomyces cerevisiae: a novel target for the transcription factors Pdr1 and Pdr3. Mol Microbiol. 1996;20(1):109–17.
Article
CAS
PubMed
Google Scholar
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30(6), e23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altpeter F, Posselt UK. Production of high quantities of 3-acetyldeoxynivalenol and deoxynivalenol. Appl Microbiol Biotechnol. 1994;41:383–7.
Article
Google Scholar
Shams M: Isolation of trichothecene mycotoxins and radicicol-metabolites and their characterization by LC-MS. University of Natural Ressources, Vienna 2012, Thesis.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex Systems 1695. 2006. http://igraph.org.
Carey V, Long L and Gentleman R. RBGL: An interface to the BOOST graph library. R package version 1.48.0. 2016. http://www.bioconductor.org.
Mueller LA, Kugler KG, Dander A, Graber A, Dehmer M. QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics. 2011;27(1):140–1.
Article
CAS
PubMed
Google Scholar
Mueller LA, Kugler KG, Graber A, Emmert-Streib F, Dehmer M. Structural measures for network biology using QuACN. BMC bioinf. 2011;12:492.
Article
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3(1):article 3.
Google Scholar
Kauffmann A, Gentleman R, Huber W. ArrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics. 2009;25(3):415–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95(25):14863–8.
Article
CAS
PubMed
PubMed Central
Google Scholar