Darwin C. The Descent of Man VOL I. 1871.
Hedrick AV, Temeles EJ. The evolution of sexual dimorphism in animals: Hypotheses and tests. Trends Ecol Evol. 1989;4:136–8.
Article
CAS
PubMed
Google Scholar
Slatkin M. Ecological causes of sexual dimorphism. Soc Study Evol. 1984;38:622–30.
Google Scholar
Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet. 2007;8:689–98.
Article
CAS
PubMed
Google Scholar
Parsch J, Ellegren H. The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet. 2013;14:83–7.
Article
CAS
PubMed
Google Scholar
Ranz JM, Castíuo-davís CI, Meiklejohn CD, Hartl DL. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science. 2003;300:1742–5.
Article
CAS
PubMed
Google Scholar
Catalán A, Hutter S, Parsch J. Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genomics. 2012;13:654.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reinke V, Gil IS, Ward S, Kazmer K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development. 2004;131:311–23.
Article
CAS
PubMed
Google Scholar
Fitzpatrick JM, Johansen MV, Johnston DA, Dunne DW, Hoffmann KF. Gender-associated gene expression in two related strains of Schistosoma japonicum. Mol Biochem Parasitol. 2004;136:191–209.
Article
CAS
PubMed
Google Scholar
Fitzpatrick JM, Johnston DA, Williams GW, Williams DJ, Freeman TC, Dunne DW, Hoffmann KF. An oligonucleotide microarray for transcriptome analysis of Schistosoma mansoni and its application/use to investigate gender-associated gene expression. Mol Biochem Parasitol. 2005;141:1–13.
Article
CAS
PubMed
Google Scholar
Eads BD, Colbourne JK, Bohuski E, Andrews J. Profiling sex-biased gene expression during parthenogenetic reproduction in Daphnia pulex. BMC Genomics. 2007;8:464.
Article
PubMed
PubMed Central
Google Scholar
Malone JH, Hawkins DL, Michalak P. Sex-biased gene expression in a ZW sex determination system. J Mol Evol. 2006;63:427–36.
Article
CAS
PubMed
Google Scholar
Naurin S, Hansson B, Hasselquist D, Kim Y-H, Bensch S. The sex-biased brain: sexual dimorphism in gene expression in two species of songbirds. BMC Genomics. 2011;12:37.
Article
PubMed
PubMed Central
Google Scholar
Fan Z, You F, Wang L, Weng S, Wu Z, Hu J, Zou Y, Tan X, Zhang P. Gonadal transcriptome analysis of male and female olive flounder (Paralichthys olivaceus). Biomed Res Int. 2014;2014:1–10.
CAS
Google Scholar
Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-drake L, Drake TA, Lusis AJ. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16:995–1004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, Weiss G, Lachmann M, Pääbo S. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Am Assoc Adv Sci. 2005;309:1850–4.
CAS
Google Scholar
Rinn JL, Snyder M. Sexual dimorphism in mammalian gene expression. Trends Genet. 2005;21:298–305.
Article
CAS
PubMed
Google Scholar
Ahyong ST, Lowry JK, Alonso M, Bamber RN, Boxshall GA, Castro P, Gerken S, Karaman GS, Goy JW, Jones DS, Meland K, Rogers DC, Svavarsson J. Animal Biodiversity: An outline of higher-level classification and survey of taxonomic richness. Volume 1817. Auckland, New Zealand: Magnolia Press; 2011.
Martin JW, Davis GE. An Updated Classification of the Recent Crustacea. 2001.
Carpenter SR, Kitchell JF, Hodgson JR. Fish predation and herbivory can regulate lake ecosystems. Bioscience. 1985;35:634–9.
Article
Google Scholar
FAO Fisheries and Aquaculture Department. World Review of Fisheries and Aquaculture: Part 1. 2012.
FAO Fisheries and Aquaculture Department: Global Aquaculture Production Statistics for the year 2011. 2013. ftp://ftp.fao.org/FI/news/GlobalAquacultureProductionStatistics2011.pdf.
Boxshall G. Crustacean parasites. In: Marine Parasitology. Edited by Rohde K.; 2005.
Costello MJ. The global economic cost of sea lice to the salmonid farming industry. J Fish Dis. 2009;32:115–8.
Article
PubMed
Google Scholar
Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE. Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol. 2015;31:72–81.
Article
CAS
PubMed
Google Scholar
Eichner C, Hamre LA, Nilsen F. Instar growth and molt increments in Lepeophtheirus salmonis (Copepoda: Caligidae) chalimus larvae. Parasitol Int. 2015;64:86–96.
Article
PubMed
Google Scholar
Johnson SC, Albright LJ. The developmental stages of Lepeophtheirus salmonis (Kroyer, 1837) (Copepoda : Caligidae). Can J Zool. 1991;69:929–50.
Article
Google Scholar
Hamre LA, Eichner C, Caipang CMA, Dalvin ST, Bron JE, Nilsen F, et al. The Salmon Louse Lepeophtheirus salmonis (Copepoda: Caligidae) Life Cycle Has Only Two Chalimus Stages. PLoS One. 2013;8:e73539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephenson JF. The chemical cues of male sea lice Lepeophtheirus salmonis encourage others to move between host Atlantic salmon Salmo salar. J Fish Biol. 2012;81:1118–23.
Article
CAS
PubMed
Google Scholar
Wotton JH, Purcell S, Covello J, Koop B, Fast M. Comparison of host selection and gene expression of adult Lepeophtheirus salmonis and Salmo salar during a cohabitation of initially infected and uninfected fish. J Aquac Res Dev. 2014;03:226–33.
Article
Google Scholar
Hull MQ, Pike AW, Mordue AJ, Rae GH. Patterns of pair formation and mating in an ectoparasitic caligid copepod Lepeophtheirus salmonis (Kroyer 1837): implications for its sensory and mating biology. Philos Trans R Soc B Biol Sci. 1998;353:753–64.
Article
Google Scholar
Ingvarsdóttir A, Birkett MA, Duce I, Mordue W, Pickett JA, Wadhams LJ, Mordue AJ. Role of semiochemicals in mate location by parasitic sea louse, Lepeophtheirus salmonis. J Chem Ecol. 2002;28:2107–17.
Article
PubMed
Google Scholar
Brandal P, Egidius E, Romslo I. Host blood: a major food component for the parasitic copepod, Lepeophtheirus salmonis Kroyer, 1838 (Crustacea caligidae). Nor J Zool. 1976;24:341–3.
Google Scholar
Ritchie G, Luntz AJM, Pikeb AW, Raec GH. Observations on mating and reproductive behaviour of Lepeophtheirus salmonis, Kroyer (Copepoda : Caligidae). J Exp Mar Bio Ecol. 1996;201:285–98.
Article
Google Scholar
Igboeli OO, Burka JF, Fast MD. Sea lice population and sex differences in P-glycoprotein expression and emamectin benzoate resistance on salmon farms in the Bay of Fundy, New Brunswick, Canada. Pest Manag Sci. 2013;70:905–14.
Article
PubMed
CAS
Google Scholar
Whyte SK, Westcott JD, Elmoslemany A, Hammell KL, Revie CW. A fixed-dose approach to conducting emamectin benzoate tolerance assessments on field-collected sea lice, Lepeophtheirus salmonis. J Fish Dis. 2013;36:283–92.
Article
CAS
PubMed
Google Scholar
Sutherland BJG, Poley JD, Igboeli OO, Jantzen JR, Fast MD, Koop BF, Jones SRM. Transcriptomic responses to emamectin benzoate in Pacific and Atlantic Canada salmon lice Lepeophtheirus salmonis with differing levels of drug resistance. Evol Appl. 2015;8:133–48.
Article
CAS
PubMed
Google Scholar
Skern-mauritzen R, Torrissen O, Glover KA. Pacific and Atlantic Lepeophtheirus salmonis (Krøyer, 1838) are allopatric subspecies : Lepeophtheirus salmonis salmonis and L. salmonis oncorhynchi subspecies novo. BMC Genet. 2014;15:1–9.
Article
Google Scholar
Yasuike M, Leong J, Jantzen SG, von Schalburg KR, Nilsen F, Jones SRM, Koop BF. Genomic resources for sea lice: Analysis of ESTs and mitochondrial genomes. Mar Biotechnol. 2012;14:155–66.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2014;43:D222–6.
Article
PubMed
PubMed Central
Google Scholar
Cutter AD, Ward S. Sexual and temporal dynamics of molecular evolution in C. elegans development. Mol Biol Evol. 2005;22:178–88.
Article
CAS
PubMed
Google Scholar
Avila FW, Sirot LK, LaFlamme BA, Rubinstein DC, Wolfner MF. Insect seminal fluid proteins: Identification and function. Annu Rev Entemology. 2011;56:21–40.
Article
CAS
Google Scholar
Chapman T. Seminal fluid-mediated fitness traits in Drosophila. Heredity. 2001;87:511–21.
Article
CAS
PubMed
Google Scholar
Poley JD, Igboeli OO, Fast MD. Towards a consensus: Multiple experiments provide evidence for constitutive expression differences among sexes and populations of sea lice (Lepeophtheirus salmonis) related to emamectin benzoate resistance. Aquaculture 2015;448:445–50.
Article
CAS
Google Scholar
Carmichael SN, Bekaert M, Taggart JB, Christie HRL, Bassett DI, Bron JE, Skuce PJ, Gharbi K, Skern-Mauritzen R, Sturm A. Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis) using RAD sequencing. PLoS One. 2013;8:e77832.
Article
CAS
PubMed
PubMed Central
Google Scholar
Granadino B, Campuzano S, Sanchez L. The Drosophila melanogaster fl(2)d gene is needed the female-specific splicing of sex-lethal RNA. EMBO J. 1990, 9:2597–2602.
CAS
PubMed
PubMed Central
Google Scholar
Eichner C, Frost P, Dysvik B, Jonassen I, Kristiansen B, Nilsen F. Salmon louse (Lepeophtheirus salmonis) transcriptomes during post molting maturation and egg production, revealed using EST-sequencing and microarray analysis. BMC Genomics. 2008;15:1–15.
Google Scholar
Carmichael SN, Bron JE, Taggart JB, Ireland JH, Bekaert M, Burgess ST, Skuce PJ, Nisbet AJ, Gharbi K, Sturm A. Salmon lice (Lepeophtheirus salmonis) showing varying emamectin benzoate susceptibilities differ in neuronal acetylcholine receptor and GABA-gated chloride channel mRNA expression. BMC Genomics. 2013;14:408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valenzuela-Muñoz V, Sturm A, Gallardo-Escárate C. Transcriptomic insights on the ABC transporter gene family in the salmon louse Caligus rogercresseyi. Parasit Vectors. 2015;8:1–14.
Article
CAS
Google Scholar
Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 2009;25:404–13.
Article
CAS
PubMed
Google Scholar
Small CM, Carney GE, Mo Q, Vannucci M, Jones AG. A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics. 2009;10:579.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lees F, Baillie M, Gettinby G, Revie CW. The efficacy of emamectin benzoate against infestations of Lepeophtheirus salmonis on farmed Atlantic salmon (Salmo salar L) in Scotland, 2002-2006. PLoS One. 2008;3:e1549.
Article
PubMed
PubMed Central
CAS
Google Scholar
Whyte SK, Westcott JD, Jimenez D, Revie CW, Hammell KL. Assessment of sea lice (Lepeophtheirus salmonis) management in New Brunswick, canada using deltamethrin (Alphamax®) through clinical field treatment and laboratory bioassay responses. Aquaculture. 2014;422–423:54–62.
Article
Google Scholar
Farlora R, Araya-Garay J, Gallardo-Escárate C. Discovery of sex-related genes through high-throughput transcriptome sequencing from the salmon louse Caligus rogercresseyi. Mar Genomics. 2014;15:85–93.
Article
PubMed
Google Scholar
McIntyre LM, Bono LM, Genissel A, Westerman R, Junk D, Telonis-Scott M, Harshman L, Wayne ML, Kopp A, Nuzhdin S V. Sex-specific expression of alternative transcripts in Drosophila. Genome Biol. 2006;7:R79.
Article
PubMed
PubMed Central
Google Scholar
Chintapalli VR, Wang J, Dow JAT. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet. 2007;39:715–20.
Article
CAS
PubMed
Google Scholar
Swanson WJ, Vacquier VD. Reproductive Protein Evolution. Annu Rev Ecol Syst. 2002;33:161–79.
Article
Google Scholar
Mueller JL, Ripoll DR, Aquadro CF, Wolfner MF. Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid. Proc Natl Acad Sci U S A. 2004;101:13542–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laflamme BA, Wolfner MF. Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev. 2013;80:80–101.
Article
CAS
PubMed
Google Scholar
McGraw LA, Gibson G, Clark AG, Wolfner MF. Genes regulated by mating, sperm, or seminal fluid proteins in mated female Drosophila mealnogaster. Curr Biol. 2004;14:1509–14.
Article
CAS
PubMed
Google Scholar
Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart J-M. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science. 2002;297:114–6.
Article
CAS
PubMed
Google Scholar
Fontenele M, Lim B, Oliveira D, Buffolo M, Perlman DH, Schupbach T, Araujo H. Calpain A modulates toll responses by limited Cactus/IkB proteolysis. Mol Biol Cell. 2013;24:2966–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng J, Zipperlen P, Kubli E. Drosophila sex-peptide stimulates female innate immune system after mating via the toll and Imd pathways. Curr Biol. 2005;15:1690–4.
Article
CAS
PubMed
Google Scholar
Karoonuthaisiri N, Sittikankeaw K, Preechaphol R, Kalachikov S, Wongsurawat T, Uawisetwathana U, Russo JJ, Ju J, Klinbunga S, Kirtikara K. ReproArray(GTS): a cDNA microarray for identification of reproduction-related genes in the giant tiger shrimp Penaeus monodon and characterization of a novel nuclear autoantigenic sperm protein (NASP) gene. Comp Biochem Physiol, Part D: Genomics Proteomics. 2009;4:90–9.
Google Scholar
Wang M, Shi J-L, Cheng G-Y, Hu Y-Q, Xu C. The antibody against a nuclear autoantigenic sperm protein can result in reproductive failure. Asian J Androl. 2009;11:183–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deegan-Clark JI, Dimmer EC, Mungall CJ. Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development. BMC Bioinformatics. 2010;11:530.
Article
Google Scholar
Grote P, Conradt B. The PLZF-like Protein TRA-4 Cooperates with the Gli-like Transcription Factor TRA-1 to Promote Female Development in C. elegans. Dev Cell. 2006;11:561–73.
Article
CAS
PubMed
Google Scholar
Mack PD, Kapelnikov A, Heifetz Y, Bender M. Mating-responsive genes in reproductive tissues of female Drosophila melanogaster. Proc Natl Acad Sci U S A. 2006;103:10358–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers DW, Whitten MMA, Thailayil J, Soichot J, Levashina EA, Catteruccia F. Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc Natl Acad Sci U S A. 2008;105:19390–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Hambuch TM, Parsch J. Molecular evolution of sex-biased genes in Drosophila. Mol Biol Evol. 2004;21:2130–9.
Article
CAS
PubMed
Google Scholar
Muse SV. Estimating synonymous and nonsynonymous substitution rates. Mol Biol Evol. 1996;13:105–14.
Article
CAS
PubMed
Google Scholar
Powell JR, Moriyama EN. Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci U S A. 1997;94:7784–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hershberg R, Petrov DA. Selection on codon bias. Annu Rev Genet. 2008;42:287–99.
Article
CAS
PubMed
Google Scholar
Appel LF, Prout M, Abu-Shumays R, Hammonds A, Garbe JC, Fristrom D, Fristrom J. The Drosophila Stubble-stubbloid gene encodes an apparent transmembrane serine protease required for epithelial morphogenesis. Proc Natl Acad Sci U S A. 1993;90:4937–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jormalainen V. Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict. Q Rev Biol. 1998;73:275–304.
Article
Google Scholar
Kerman BE, Cheshire AM, Myat MM, Andrew DJ. Ribbon modulates apical membrane during tube elongation through crumbs and moesin. Dev Biol. 2008;320:278–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao T, Shi H, Huang D, Peng J. Def functions as a cell autonomous factor in organogenesis of digestive organs in zebrafish. PLoS One 2013;8:e58858.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hastie LC, Wallace C, Birkett MA, Douglas A, Jones O, AJ M (L), Ritchie G, Pickett JA, Webster JL, Bowman AS. Prevalence and infection intensity of sea lice (Lepeophtheirus salmonis) on Atlantic salmon (Salmo salar) host is reduced by the non-host compound 2-aminoacetophenone. Aquaculture. 2013;410-411:179–83.
Article
CAS
Google Scholar
Sánchez-Gracia A, Vieira FG, Rozas J. Molecular evolution of the major chemosensory gene families in insects. Heredity. 2009;103:208–16.
Article
PubMed
CAS
Google Scholar
Cheah Y, Yang W. Functions of essential nutrition for high quality spermatogenesis. Adv Biosci Biotechnol. 2011;02:182–97.
Article
CAS
Google Scholar
Stavang JA, Chauvigné F, Kongshaug H, Cerdà J, Nilsen F, Finn RN. Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genomics. 2015;16:618.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turek M, Bringmann H. Gene expression changes of Caenorhabditis elegans larvae during molting and sleep-like lethargus. PLoS One. 2014;9:e113269.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muller H, Catteruccia F, Vizioli J, Torre D, Crisanti A. Constitutive and blood meal-induced trypsin genes in Anopheles gambiae. Exp Parasitol. 1995;81:371–85.
Article
CAS
PubMed
Google Scholar
Fast AMD, Burka JF, Johnson SC, Ross NW. Enzymes released from Lepeophtheirus salmonis in response to mucus from different salmonids. Am Soc Parasitol. 2003;89:7–13.
Article
CAS
Google Scholar
Fast MD, Johnson SC, Eddy TD, Pinto D, Ross NW. Lepeophtheirus salmonis secretory/excretory products and their effects on Atlantic salmon immune gene regulation. Parasite Immunol. 2007;29:179–89.
Article
CAS
PubMed
Google Scholar
Kvamme BO, Skern R, Frost P, Nilsen F. Molecular characterisation of five trypsin-like peptidase transcripts from the salmon louse (Lepeophtheirus salmonis) intestine. Int J Parasitol. 2004;34:823–32.
Article
CAS
PubMed
Google Scholar
Jones PG, Hammell KL, Gettinby G, Revie CW. Detection of emamectin benzoate tolerance emergence in different life stages of sea lice, Lepeophtheirus salmonis, on farmed Atlantic salmon, Salmo salar L. J Fish Dis. 2013;36:209–20.
Article
CAS
PubMed
Google Scholar
Saksida SM, Morrison D, McKenzie P, Milligan B, Downey E, Boyce B, Eaves A. Use of Atlantic salmon, Salmo salar L., farm treatment data and bioassays to assess for resistance of sea lice, Lepeophtheirus salmonis, to emamectin benzoate (SLICE®) in British Columbia, Canada. J Fish Dis. 2013;36:515–20.
Article
CAS
PubMed
Google Scholar
Sutherland BJG, Jantzen SG, Yasuike M, Sanderson DS, Koop BF, Jones SRM. Transcriptomics of coping strategies in free-swimming Lepeophtheirus salmonis (Copepoda) larvae responding to abiotic stress. Mol Ecol. 2012;21:6000–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:169–75.
Article
Google Scholar
Huang D, Sherman B, Lempick R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4:44–57.
Article
CAS
Google Scholar
Huang D, Sherman B, Lempick R. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.
Article
CAS
Google Scholar
Jantzen SG, Sutherland BJ, Minkley DR, Koop BF. GO Trimming: Systematically reducing redundancy in large Gene Ontology datasets. BMC Res Notes. 2011;4:267.
Article
PubMed
PubMed Central
Google Scholar
Consortium U. UniProt: a hub for protein information. Nucleic Acids Res. 2014;43:204–12.
Article
Google Scholar
Sonenshine DE, Bissinger BW, Egekwu N, Donohue K V., Khalil SM, Roe RM. First transcriptome of the testis-vas deferens-male accessory gland and proteome of the spermatophore from Dermacentor variabilis (acari: Ixodidae). PLoS One 2011;6:e24711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorus S, Wasbrough E, Busby J, Wilkins E, Karr T. Sperm proteomics reveals intensified sexual selection on mouse sperm membrane and acrosome genes. Mol Biol Evol. 2010;27:1235–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Findlay GD, Yi X, Maccoss MJ, Swanson WJ. Proteomics Reveals Novel Drosophila Seminal Fluid Proteins Transferred at Mating. Plos Biol. 2008;6:1417–26.
Article
CAS
Google Scholar
Costa AFDV, Gasser RB, Dias SRC, Rabelo EML. Male-enriched transcription of genes encoding ASPs and Kunitz-type protease inhibitors in Ancylostoma species. Mol Cell Probes. 2009;23:298–303.
Article
CAS
PubMed
Google Scholar
Veselsky L, Jonakova V, Cechova D. A Kunitz Type of Proteinase Inhibitor Isolated from Boar Seminal Vesicle Fluid. Andrologia. 1985;17:352–8.
Article
CAS
PubMed
Google Scholar
Clauss A, Persson M, Lilja H, Lundwall Å. Three genes expressing Kunitz domains in the epididymis are related to genes of WFDC-type protease inhibitors and semen coagulum proteins in spite of lacking similarity between their protein products. BMC Biochem. 2011;12:55.
Article
CAS
PubMed
PubMed Central
Google Scholar
South A, Sirot LK, Lewis SM. Identification of predicted seminal fluid proteins in Tribolium castaneum. Insect Mol Biol. 2011;20:447–56.
Article
CAS
PubMed
Google Scholar
Pilch B, Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 2006;7:R40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ram KR, Wolfner MF. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol. 2007;47:427–45.
Article
CAS
Google Scholar
Konno A, Shiba K, Cai C, Inaba K. Branchial cilia and sperm flagella recruit distinct axonemal components. PLoS One. 2015;10:e0126005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muhlrad PJ, Ward S. Spermiogenesis initiation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene. Genetics. 2002;161:143–55.
CAS
PubMed
PubMed Central
Google Scholar
Baer B, Heazlewood JL, Taylor NL, Eubel H, Millar AH. The seminal fluid proteome of the honeybee Apis mellifera. Proteomics. 2009;9:2085–97.
Article
CAS
PubMed
Google Scholar
Braswell WE, Andrés JA, Maroja LS, Harrison RG, Howard DJ, Swanson WJ. Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome. 2006;49:1069–80.
Article
CAS
PubMed
Google Scholar
Netzel-Arnett S, Bugge TH, Hess RA, Carnes K, Stringer BW, Scarman AL, Hooper JD, Tonks ID, Kay GF, Antalis TM. The glycosylphosphatidylinositol-anchored serine protease PRSS21 (testisin) imparts murine epididymal sperm cell maturation and fertilizing ability. Biol Reprod. 2009;81:921–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scarman AL, Hooper JD, Boucaut KJ, Sit ML, Webb GC, Normyle JF, Antalis TM. Organization and chromosomal localization of the murine Testisin gene encoding a serine protease temporally expressed during spermatogenesis. Eur J Biochem. 2001;268:1250–8.
Article
CAS
PubMed
Google Scholar
Yu JX, Chao L, Chao J. Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. J Biol Chem. 1994;269:18843–8.
CAS
PubMed
Google Scholar
Kelleher ES, Watts TD, LaFlamme BA, Haynes PA, Markow TA. Proteomic analysis of Drosophila mojavensis male accessory glands suggests novel classes of seminal fluid proteins. Insect Biochem Mol Biol. 2009;39:366–71.
Article
CAS
PubMed
Google Scholar
Walker MJ, Rylett CM, Keen JN, Audsley N, Sajid M, Shirras AD, Isaac RE. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase. Proteome Sci. 2006;4:9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mawson CA, Fischer MI. Zinc and carbonic anhydrase in human semen. Biochem J. 1953;55:696–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inaba K, Dréanno C, Cosson J. Control of flatfish sperm motility by CO2 and carbonic anhydrase. Cell Motil Cytoskeleton. 2003;55:174–87.
Article
CAS
PubMed
Google Scholar
Holm L, Ridderstråle Y, Knutsson P. Localisation of carbonic anhydrase in the sperm storing regions of the domestic hen oviduct. Cells Tissues Organs. 1996;156:253–60.
Article
CAS
Google Scholar
Reinhardt K, Wong CH, Georgiou AS. Detection of seminal fluid proteins in the bed bug, Cimex lectularius, using two-dimensional gel electrophoresis and mass spectrometry. Parasitology. 2009;136:283–92.
Article
CAS
PubMed
Google Scholar
Chen H, Chen X, Zheng Y. The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signalling. Cell Stem Cell. 2013;13:73–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan W, Ma L, Burns KH, Matzuk MM. Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proc Natl Acad Sci U S A. 2004;101:7793–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang CG, Lamitina T, Agre P, Strange K. Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Am J Physiol Cell Physiol. 2007;292:C1867–73.
Article
CAS
PubMed
Google Scholar
Milardi D, Grande G, Vincenzoni F, Messana I, Pontecorvi A, De Marinis L, Castagnola M, Marana R. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil Steril. 2012;97:67–73. e1.
Article
CAS
PubMed
Google Scholar
Drapeau MD, Albert S, Kucharski R, Prusko C, Maleszka R. Evolution of the yellow/major royal jelly protein family and the emergence of social behavior in honey bees. Genome Res 2006:16:1385–1394.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitzová J, Klaudiny J, Albert Š, Schröder W, Schreckengost W, Hanes J, Júdová J, Šimúth J. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell Mol Life Sci. 1998;54:1020–30.
Article
PubMed
Google Scholar
Albert Š, Klaudiny J, Šimúth J. Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly. Insect Biochem Mol Biol. 1999;29:427–34.
Article
CAS
PubMed
Google Scholar
Albert S, Bhattacharya D, Klaudiny J, Schmitzová J, Simúth J. The family of major royal jelly proteins and its evolution. J Mol Evol. 1999;49:290–7.
Article
CAS
PubMed
Google Scholar
Tootle TL, Spradling AC. Drosophila Pxt: a cyclooxygenase-like facilitator of follicle maturation. Development. 2008;135:839–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konstandi OA, Papassideri IS, Stravopodis DJ, Kenoutis CA, Hasan Z, Katsorchis T, Wever R, Margaritis LH. The enzymatic component of Drosophila melanogaster chorion is the Pxd peroxidase. Insect Biochem Mol Biol. 2005;35:1043–57.
Article
CAS
PubMed
Google Scholar
Dezelee S, Bras F, Contamine D, Lopez-Ferber M, Segretain D, Teninges D. Molecular analysis of ref(2)P, a Drosophila gene implicated in sigma rhabdovirus multiplication and necessary for male fertility. EMBO J. 1989;8:3437–46.
CAS
PubMed
PubMed Central
Google Scholar