Wen PY, Kesari S. Malignant gliomas in adults. New Engl J Med. 2008; 359(5):492–507.
Article
CAS
PubMed
Google Scholar
Stupp R, Tonn JC, Brada M, Pentheroudakis G, Group EGW, et al.High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010; 21(suppl 5):v190—v193.
PubMed
Google Scholar
Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. Jama. 2013; 310(17):1842–1850.
Article
CAS
PubMed
Google Scholar
Bai RY, Staedtke V, Riggins GJ. Molecular targeting of glioblastoma: drug discovery and therapies. Trends Mol Med. 2011; 17(6):301–312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fausel C. Targeted chronic myeloid leukemia therapy: seeking a cure. Am J Health Syst Pharm. 2007; 64(24 Supplement 15):S9—S15.
PubMed
Google Scholar
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al.The somatic genomic landscape of glioblastoma. Cell. 2013; 155(2):462–477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The epidemiology of glioma in adults: “state of the science” review. Neuro Oncol. 2014; 16(7):896–913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell. 2010; 17(1):98–110.
Article
CAS
PubMed Central
Google Scholar
Network TCGAR. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015; 372:2481–2498.
Article
Google Scholar
Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, Cardon LR, et al.Use of genome-wide association studies for drug repositioning. Nat Biotechnol. 2012; 30(4):317–320.
Article
CAS
PubMed
Google Scholar
Wang ZY, Zhang HY. Rational drug repositioning by medical genetics. Nat Biotechnol. 2013; 31(12):1080–1082.
Article
CAS
PubMed
Google Scholar
Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al.Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014; 506(7488):376–381.
Article
CAS
PubMed
Google Scholar
Chen Y, Xu R. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery. BMC Genomics. 2015; 16(Suppl 7):S9.
Article
PubMed
PubMed Central
Google Scholar
Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med. 2011; 3(96):96ra76–96ra76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahchan NS, Dudley JT, Mazur PK, Flores N, Yang D, Palmerton A, et al.A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer discovery. 2013; 3(12):1364–1377.
Article
CAS
PubMed
Google Scholar
Chen Y, Li L, Zhang GQ, Xu R. Phenome-driven disease genetics prediction toward drug discovery. Bioinformatics. 2015; 31(12):i276—i283.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Zhang X, Zhang Gq, Xu R. Comparative analysis of a novel disease phenotype network based on clinical manifestations. J Biomed Inform. 2015; 53:113–120.
Article
PubMed
Google Scholar
Chen Y, Li L, Xu R. Disease Comorbidity Network Guides the Detection of Molecular Evidence for the Link Between Colorectal Cancer and Obesity. AMIA Summits Transl Sci Proc. 2015; 2015:201.
PubMed
PubMed Central
Google Scholar
Xu R, Wang Q. PhenoPredict: A disease phenome-wide drug repositioning approach towards schizophrenia drug discovery. J biomed inform. 2015; 56:348–355.
Article
PubMed
PubMed Central
Google Scholar
Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Group MGD, et al.The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res. 2015; 43(D1):D726—D736.
Article
PubMed
Google Scholar
Hoehndorf R, Schofield PN, Gkoutos GV. PhenomeNET: a whole-phenome approach to disease gene discovery. Nucleic Acids Res. 2011; 39(18):e119—e119.
Article
Google Scholar
Hoehndorf R, Hiebert T, Hardy NW, Schofield PN, Gkoutos GV, Dumontier M. Mouse model phenotypes provide information about human drug targets. Bioinformatics. 2014; 30(5):719–725.
Article
CAS
Google Scholar
Chen Y, Ren X, Zhang GQ, Xu R. Ontology-guided organ detection to retrieve web images of disease manifestation: towards the construction of a consumer-based health image library. J Am Med Inform Assoc. 2013; 20(6):1076–1081.
Article
PubMed
PubMed Central
Google Scholar
Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Human Genet. 2008; 83(5):610–615.
Article
CAS
Google Scholar
Xu R, Wang Q. Large-scale combining signals from both biomedical literature and the FDA Adverse Event Reporting System (FAERS) to improve post-marketing drug safety signal detection. BMC bioinformatics. 2014; 15(1):17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu R, Wang Q. Large-scale extraction of accurate drug-disease treatment pairs from biomedical literature for drug repurposing. BMC bioinformatics. 2013; 14(1):181.
Article
PubMed
PubMed Central
Google Scholar
Hoehndorf R, Oellrich A, Rebholz-Schuhmann D, Schofield PN, Gkoutos GV. Linking pharmgkb to phenotype studies and animal models of disease for drug repurposing. In: Pac Symp Biocomput. Pacific Symposium on Biocomputing: 2012. p. 388–399.
Smith CL, Eppig JT. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med. 2009; 1(3):390–399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte–vascular coupling and the blood–brain barrier by invading glioma cells. Nature communications. 2014:5. doi:10.1038/ncomms5196.
Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, et al.Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther. 2010; 9(1):67–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, et al.Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncology. 2010; 12(11):1113–1125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunological reviews. 2014; 257(1):107–126.
Article
CAS
PubMed
Google Scholar
Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al.CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature medicine. 2013; 19(10):1264–1272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morosetti R, Servidei T, Mirabella M, Rutella S, Mangiola A, Maira G, et al.The PPAR γ ligands PGJ2 and rosiglitazone show a differential ability to inhibit proliferation and to induce apoptosis and differentiation of human glioblastoma cell lines. Int J Oncol. 2004; 25(2):493–502.
CAS
Google Scholar
Vlachostergios PJ, Hatzidaki E, Befani CD, Liakos P, Papandreou CN. Bortezomib overcomes MGMT-related resistance of glioblastoma cell lines to temozolomide in a schedule-dependent manner. Investig New Drugs. 2013; 31(5):1169–1181.
Article
CAS
Google Scholar
Altiok N, Ersoz M, Koyuturk M. Estradiol induces JNK-dependent apoptosis in glioblastoma cells. Oncology letters. 2011; 2(6):1281–1285.
CAS
PubMed
PubMed Central
Google Scholar
Jiang P, Mukthavavam R, Chao Y, Bharati IS, Fogal V, Pastorino S, et al. Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. Journal of translational medicine. 2014; 12(1):1.
Article
Google Scholar
Turcan S, Fabius AW, Borodovsky A, Pedraza A, Brennan C, Huse J, et al.Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine. Oncotarget. 2013; 4(10):1729–1736.
Article
PubMed
PubMed Central
Google Scholar
Suenderhauf C, Hammann F, Huwyler J. Computational prediction of blood-brain barrier permeability using decision tree induction. Molecules. 2012; 17(9):10429–10445.
Article
CAS
PubMed
Google Scholar
Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012; 32(11):1959–1972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al.The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483(7391):603–607.
Article
CAS
PubMed
PubMed Central
Google Scholar